
19

Coarse Grained Reconfigurable Architectures Chapter 2

2. Coarse Grained Reconfigurable
Architectures

While the first systems for reconfigurable computation featured fine grained
FPGAs, it was soon discovered, that FPGAs bear different disadvantages for
computational tasks. First, due to the bit-level operations, operators for wide
datapaths have to be composed of several (bit-level) processing units. This
includes typically a large routing overhead for the interconnect between these
units and leads to a low silicon area efficiency of FPGA computing solutions.
Also, the switched routing wires use up more power than hardwired connections.

A second drawback of the fine granularity is the high volume of configuration
data needed for the large number of both processing units and routing switches.
This implies the need for a large configuration memory, with an according power
dissipation. The long configuration time, which is implied by this problem,
makes execution models relying on a steady change of the configuration
impossible.

As a third disadvantage, application development for FPGAs is very similar to
VLSI design due to the programmability at logic level. The mapping of
applications from common high-level languages is difficult compared to the
compilation onto a standard microprocessor, as the granularity of the target
FPGA does not match that of the operations in the source code. The standard way
of application specification is still a hardware description language, which
requires a hardware expert. In the following design process, the large number of
processing units leads to a complex synthesis, which uses up much computation
time.

Coarse grained reconfigurable architectures try to overcome the disadvantages of
FPGA-based computing solutions by providing multiple-bit wide datapaths and
complex operators instead of bit-level configurability. In contrast to FPGAs, the
wide datapath allows the efficient implementation of complex operators in
silicon. Thus, the routing overhead generated by having to compose complex
operators from bit-level processing units is avoided.

Regarding the interconnects between processing elements, coarse grain
architectures also differ in several ways to FPGAs. The connections are multiple
bits wide, which implies a higher area usage for a single line. On the other hand,
the number of processing elements is typically several orders of magnitude lower
than in an FPGA. Thus, much fewer lines are needed, resulting in a globally lower
area usage for routing. The lower number and higher granularity of

Chapter 2 Coarse Grained Reconfigurable Architectures

20

communication lines allows also for communication resources, which would be
quite inefficient for fine grained architectures. Examples for such resources are
time-multiplexed buses or global buses, which connect every processing element.

In the past years, several approaches for coarse grained reconfigurable
architectures have been published. In this chapter, several example architectures
will be presented to give an overview over the developments in the area of coarse
grain reconfigurable computing. A time line of the presented architectures is
given in Table 2-1, together with basic properties of each architecture. The
properties considered are:

• The basic interconnect structure
• The width of the datapaths
• The reconfiguration model

The basic interconnect structure is determined by the global arrangement of the
processing elements. This in turn is often motivated by the targeted applications
for the architecture or by implementation considerations. Obviously, the type of
the communication architecture has a direct impact on the complexity of

Publi-
cation
Year

Name of
System

PE
Arrangement

Reconfiguration
Model

Datapath
Width

1990 PADDI Crossbar Static 16 bit

1993 PADDI-2 Crossbar Static 16 bit

1994 DP-FPGA Mesh Static 4 bit

1995 KressArray Mesh Static 32 bit

1996 Colt Mesh Dynamic 16 bit

1996 RaPiD Linear Array Mostly Static 16 bit

1996 MATRIX Mesh Dynamic 16 bit

1997 Garp Mesh Static 2 bit

1997 Raw Mesh Static 32 bit

1998 PipeRench Linear Array Dynamic 4 bit

1998 REMARC Mesh Static 16 bit

1998 MorphoSys Mesh Dynamic 16 bit

1999 CHESS Mesh Static 4 bit

Table 2-1: Time line of example coarse-grain reconfigurable
architectures

21

Coarse Grained Reconfigurable Architectures Chapter 2

application mapping. The predominating structure of the architectures presented
here is a two-dimensional mesh. In other architectures, the processing elements
are arranged in one or more linear arrays. The third interconnect structure found
is a crossbar switch being used to connect processing elements. This allows
basically arbitrary connections.

The width of the datapath ranges from two bits to 32 bits. The selection of the
datapath width for an architecture is a trade-off between flexibility and efficiency.
While a wide datapath allows an efficient implementation of the processing
element for operations on a whole data word, the execution of operations on parts
of a data word, which occur in certain applications, requires typically several
execution steps, including the extraction of the relevant bit range. A smaller
datapath allows the direct execution of such operations or implies less extraction
overhead. On the other hand, operators for wider data words have to be
composed of several processing elements, which inflicts routing overhead.

The reconfiguration model determines, when a new configuration is loaded into
the architecture. For architectures featuring static reconfiguration, a
configuration is loaded at the beginning of the execution and stays during the
computation phase. When a new configuration has to be loaded, the execution
must stop. The dynamic reconfiguration model allows a new configuration to be
loaded while the application is running. This includes the case, that the execution
relies on steady reconfiguration of the processing elements. Some architectures
use normally static reconfiguration, but allow dynamic reconfiguration for
special purposes like the configuration of unused parts for the next task, while a
computation is running. Such architectures are denoted as static, as this remains
the main reconfiguration model.

The presentation of the example systems is ordered by the interconnect structure.
In the next subsection, nine mesh-based architectures are described. Then, two
systems based on linear arrays are presented, and finally, two systems employing
a crossbar switch are shown.

2.1 Mesh-Based Architectures
Mesh-based architectures arrange their processing elements in a rectangular
array, featuring horizontal and vertical connections. This structure allows
efficient parallelism and a good use of communication resources. However, the
advantages of a mesh are traded for the need of an efficient placement and
routing step. The quality of this step can have a remarkable impact on the
application performance. Though, due to the relative low number of processing
elements, the placement and routing is often much less complex than for e.g.
FPGAs.

Chapter 2 Coarse Grained Reconfigurable Architectures

22

The arrangement of the processing elements encourages nearest neighbor links
between adjacent elements as an obvious communication resource. Typically,
longer lines are added with different lengths, which allow connections over
several processing elements.

The first architecture called DP-FPGA [ChLe94] was published by D. Cherepacha
and D. Lewis from the University of Toronto. This approach shows clearly its
relation to FPGAs, featuring bit-sliced ALUs and a routing architecture quite
similar to its fine-grained ancestors. The KressArray-I [Kres96] by R. Kress of
University of Kaiserslautern is an approach with a very wide datapath, which
required to reduce the communication resources in order to achieve a feasible
chip design. However, the KressArray features also a serial bus as a high-level
connection, which connecs all processing elements, and is globally scheduled.
The KressArray-I was accompanied by a control unit and integrated into the
Xputer prototype MoM-3 [Rein99]. The Colt [BAM96] architecture by R. Bittner,
P. Athanas and M. Musgrove from Virginia State University features a single
integer multiplier in addition to the mesh of processing elements. This
architecture is a study for the wormhole runtime-reconfiguration computing
paradigm, which relies on heavy dynamic reconfiguration. The MATRIX
[MiDe96] system by E. Mirsky and A. DeHon of MIT is the first one to extend the
processing elements to small processors, featuring local instruction memories in
each element as well as small data memories. While the previous systems
resembled stand-alone architectures (sometimes accompanied by a control unit),
the Garp [HaWa97] architecture by J. Hauser and J. Wawrzynek from University
of Berkeley is a system composed of a normal microprocessor with a
reconfigurable coprocessor. It features lookup-table based processing elements
with only two-bit wide datapaths. In fact, this architecture comes very close to an
FPGA and is often considered to be fine-grained. It appears in this chapter, as the
basic unit of reconfiguration is a whole row of processing elements, which form
a kind of reconfigurable ALU. Though, the available routing resources of this
approach classify it as a mesh-based architecture. The Raw machine paradigm
[WTSS97], which has been developed by E. Waingold et al. from MIT features the
most complex processing elements with a complete RISC processor, data and
instruction memory, and a programmable switch for time-multiplexed nearest
neighbor interconnects. In contrast to other approaches, which try to provide a
more complex FPGA, this architecture tries to realize a mesh of less complex
microprocessors, with the main responsibility for proper execution moved to the
software environment at compile time. The REMARC [MiOl98a] architecture by
T. Miyamori and K. Olukotun from Stanford University is another co-processor,
consisting of 64 small processors with memory. The MorphoSys [LSLB99]
machine by G. Lu et al. from Irvine University is also a hybrid system consisting
of a RISC processor with a reconfigurable coprocessor. Here, the reconfigurable
mesh is accompanied by a frame buffer for intermediate data. The last

23

Coarse Grained Reconfigurable Architectures Chapter 2

architecture shown is the CHESS [MVS99] array by A. Marshall et al. from
Hewlett Packard Laboratories. This architecture features a unique PE
arrangement in the form of a chess board, with embedded memories to support
multimedia applications.

2.1.1 The Datapath FPGA
In 1994, Cherepacha and Lewis introduced the DP-FPGA (Datapath FPGA)
[ChLe94], [ChLe96]. The DP-FPGA is intended for implementing regularly
structured datapaths like the ones found in digital signal processing,
communications, circuit emulation and special-purpose processor applications.
The system comprises three basic components: A control logic, the datapath and
memory. The control logic resembles a general purpose architecture adequate for
implementing random logic. The memory is useful for large datapath designs.
The datapath, which also occupies the most area of the design, is unique for the
DP-FPGA and will be described in more detail in the following.

The targeted applications for the DP-FPGA may contain several datapaths of
various widths, where also a small number of irregularities in some bit-slices is
allowed. To provide both flexibility like bit-level devices and area advantages like
ALU level architectures, the DP-FPGA features a medium granularity of four bits
for both logic and routing resources. Thus, the basic logic block is made of four
bit-slices, which are programmed identically using the same set of configuration
bits. Each bit-slice comprises a lookup table, a carry chain and a four-bit register,
the latter inspired by an experimental study by Rose et al [RFLC90].

An overview on the routing architecture of the DP-FPGA is shown in figure 2-1.
In contrast to other architectures, the DP-FPGA features separate routing
resources for data (horizontal) and control signals (vertical), both using four-bit
buses. Vertical data routing is needed for shifts of multiples of four bits,
connections to the I/O pads and connections spanning several rows, when the
entire bit-slice does not fit in one row. However, such vertical routing connections
are only possible in a limited way by using control wires for data transport.

To enable bit-granular shifts and irregularities in datapaths in spite of the four-bit
granularity, shift blocks are included in the architecture, which can perform up
and down shifts from zero to three bits. As these shifters can access data lines as
well as control lines for source and destination, limited vertical data routing is
also possible.

2.1.2 The KressArray-I
In 1995, the KressArray-I [Kres96] was introduced under the name rDPA
(reconfigurable DataPath Architecture). The architecture was originally targeted
as a reconfigurable ALU (rALU) for the MoM-3 prototype [Rein99] of the Xputer

Chapter 2 Coarse Grained Reconfigurable Architectures

24

machine paradigm [HHW90], [HHRS91], [Hirs91], [AHRS94]. As Xputers are
based on a strict separation of control path and datapath, the KressArray-I was
used exclusively for application datapaths, which can include branches as well as
while and do-while loops. Although the KressArray-I is dynamically partially
configurable, the typical datapath would not change during execution.

The general structure of the KressArray-I system is depicted in figure 2-2. It
consists of the array itself, resembling a mesh of processing elements called
rDPUs (reconfigurable DataPath Units) and a controller unit. The controller
manages the input and output of data streams to and from the array as well as the
configuration process. For data I/O, the controller interfaces between the array
and an external bus to the memory. Data streams are provided over this bus,
controlled by the MoM-3 machine. For synchronization of input and output data
streams, a data buffer register is provided. Further, the status of the array, like the
finishing of the computation, is signaled by a status generation unit. The data
words of the I/O streams may have to be distributed to arbitrary rDPUs. For this
purpose, every rDPU can be addressed individually. An address generation unit
delivers the correct addresses for the rDPU registers, so the data can be written to
the correct location. For intermediate results of the computation, a register file
with 64 entries of 34 bits each is integrated, which can also be used as a smart
cache to save memory cycles. The global control of all the parts is done by the
KressArray-I control unit, which executes a control program. The instruction set
includes operations for data transfer between the external bus, the register file,
and specific rDPUs in the array. The control program is loaded during the
configuration time by the configuration unit, which manages also the

L sh

CD

CC

SD

Sc

L sh

CD

CC

SD

Sc

L sh

CD

CC

SD

Sc

L sh

CD

CC

SD

Sc

shift chain
4-bit data bus
1-bit control wire
carry chain
L: logic block
sh: shift block
CC: control connection block
CD: data connection block
SC: control switch block
SD: data switch block

Figure 2-1: The DP-FPGA architecture

25

Coarse Grained Reconfigurable Architectures Chapter 2

configuration of the rDPU array. The controller is connected to the rDPU array by
a serial global bus leading to every single rDPU, which is used for data transfers
and for configuration.

The KressArray-I itself resembles a rectangular array of rDPUs. In the prototype
implementation, a subarray of three by three rDPUs was implemented on one
chip. The whole array was composed of two by four chips, resulting in an array
of six by twelve (72) rDPUs. Each single rDPU contains an ALU with a datapath
of 32 bits wide, featuring all integer operators of the C programming language.
The operators are microprogrammed, so the operator repertory can be extended
if necessary. The KressArray architectures are based on transport-triggered
execution. That means, an operator starts its computation as soon as all input
operands are available.

The routing architecture of the KressArray-I features nearest neighbor
connections from each rDPU to its southern and eastern neighbors. As an
additional routing resource for longer connections, the serial global bus is
available, which is also used for data I/O and the transfer of intermediate results
between the array and the register file in the controller. This global bus is
controlled by a static schedule, which is determined at compile-time. The rALU
controller uses this schedule to manage the data transfers over the global bus.

Register

File

KressArray-I
 Address

Generation

KressArray-I control unit

external Bus to Host and Main Memory (MoM Bus)

KressArray-I
global I/O bus

op op op op op op

op op op op op op

op op op op op op

Unit

status FIFO

conf.
unit

rALU controller

op op op op op op

reconf. datapath unit (rDPU)

Figure 2-2: KressArray-I architecture

Chapter 2 Coarse Grained Reconfigurable Architectures

26

2.1.3 The Colt System
The Colt system [BAM96], [BiAt97], presented in 1996 by Bittner, Athanas and
Musgrove, combines concepts from FPGAs and data flow computing. Colt is
mainly targeted for DSP applications, which are implemented by configuring
pipelines or parts of pipelines onto the architecture. These pipelines are then used
to process data streams. Thus, the Colt architecture can be seen as a Pipenet as
discussed by Hwang [Hwan93]. The granularity of the data paths for routing and
operations is 16 bits, with only limited possibilities for finer-grained operations.
The Colt architecture relies highly on runtime reconfiguration (RTR). It uses
Wormhole-RTR as an execution model. Hereby, the data streams to be processed
carry a header with configuration information. This header holds the
configuration data for both the routing and the functionality of all processing
elements the data stream encounters on its way. Thus, the model employs the
wormhole routing method known from computing networks [DaSe87].

The general structure of the Colt architecture is shown in figure 2-3. The main
components are a mesh of IFUs (Interconnected Functional Units), a crossbar
switch, an integer multiplier, and six data ports. The mesh of IFUs is the main
computational facility. Each IFU features a 16-bit ALU with all logical operations
with two inputs as well as a carry chain for add, subtract and negation.
Furthermore, each IFU contains a barrel shifter to support multipliers and
floating point arithmetic, a conditional unit for data-dependent flow control, and
optional delay units for synchronization of pipelines. In addition to the ALU
output, there is an auxiliary output passing through one of the inputs to support
floating point arithmetic. Thus, the core of an IFU has two inputs and two
outputs. The IFUs are connected by unidirectional nearest neighbor links in each
direction with one outgoing and one incoming port at each side of the IFU.
Additionally, each row and column features a so-called skip bus, which is a
segmented bus featuring bidirectional local links, which can be merged. The IFUs
in the northern and southern rows of the mesh differ from the inner IFUs in
regard of their links at the edge, which are connected to the crossbar. In the
northern row, each IFU has two inputs at the north side coming from the crossbar,
while in the southern row, each IFU features a single output at the south side
going to the crossbar. At the eastern and western edge, the two nearest neighbor
links and the skip bus are connected to the opposing edge, thus forming a torus
structure. The dedicated integer multiplier has two 16 bit inputs and two 16 bit
outputs for the high and low word of the 32 bit result. The six data ports are
bidirectional, each 20 bits wide with 16 bits for data and four bits for stream flow
control. The crossbar is used to make nearly arbitrary connections between the
mesh, the multiplier and the data ports.

27

Coarse Grained Reconfigurable Architectures Chapter 2

2.1.4 The MATRIX architecture
The MATRIX architecture by Mirsky and DeHon [MiDe96], [Mirs96], [Mirs97]
was introduced in 1996. It is aimed at general computing. The main idea is to
make the amount of the basic resources of a computing system, namely
computational units, instruction storage and data memory, adaptable to
application requirements. Although the reconfiguration is meant to happen at a
per task basis, the processing elements can be programmed using instruction
storage to change their behavior and data sources on a cycle-by-cycle basis.

The MATRIX comprises an array of identical Basic Functional Units (BFUs). Each
BFU contains an 8-bit ALU, a 256 words of 8-bit memory and a control logic. The
ALU features the standard set of arithmetic and logic functions and a multiplier.
A configurable carry-chain between adjacent ALUs can be used to cascade ALUs
for wide-word operations. The control logic can generate local control signals by
several ways. A pattern matcher can be used to generate control signals from the
ALU output data. A reduction network can be employed for control generated
from neighbor data. Finally, a 20-input, 8-output NOR block may be used as half
of an PLA to produce control signals. According to these features, a BFU can serve
as an instruction memory, a data memory, a register-file-ALU combination, or an
independent ALU function. Due to the routing resources of the MATRIX,
instructions may be routed over the array to several ALUs. Thus, a high
compression rate for instructions can be achieved.

Multiplier

DP

DP

DP

Smart
Crossbar

IFUIFUIFUIFU

IFUIFUIFUIFU

IFUIFUIFUIFU

IFUIFUIFUIFU

DP

DP

DP
I/O Pins

I/O Pins

I/O Pins

I/O Pins

I/O Pins

I/O Pins

Figure 2-3: General structure of the Colt architecture

IFU: Interconnected
Functional Unit

DP: Data Port

Chapter 2 Coarse Grained Reconfigurable Architectures

28

The routing architecture of the MATRIX, which is sketched in figur e2-4, consists
of a hierarchical network with three levels, each consisting of 8-bit buses. The
levels are nearest neighbor connections, length four bypass connections, and
global lines. The nearest neighbor connections link each BFU to all of its
neighbors within manhattan distance two (see left side of figure 2-4). The length
four bypass connections (right side of figure 2-4) allows corner turns, local fan-
out, medium distance interconnect, and some data shifting and retiming. The
global lines span an entire row or column. There are four of them in every row
and column.

2.1.5 The Garp Architecture
The Garp architecture concept [HaWa97] first published in 1997 by Hauser and
Wawrzynek, consists of a standard Processor accompanied by a reconfigurable
architecture, aiming to combine the advantages of both concepts. By including a
microprocessor, the Garp is targeted for ordinary processing environments, with
the reconfigurable array being only activated for acceleration of specific loops or
subroutines. Although the processing elements of Garp resemble basically LUTs
with a two bit datapath, the architecture is considered to be medium-grained, as
the basic unit of reconfiguration is a cluster of several processing elements.

Figure 2-4: Local interconnect and length four bypass interconnect of the
MATRIX architecture
a) Nearest neighbor interconnect within distance two
b) Length four bypass interconnect

a) b)

29

Coarse Grained Reconfigurable Architectures Chapter 2

Garp consists of a main processor resembling a MIPS-II attached to a
reconfigurable array. The instruction set of the processor has been extended with
instructions to configure and control the array. An execution of the reconfigurable
array is initialized by the processor specifying the number of clock cycles the
computation in the array should last. Hereby, the processor clock and the array
clock do not need to be the same.

The reconfigurable array consists of at least 32 rows of processing elements
(called blocks) arranged in 24 columns. An overview of this structure is given in
figure 2-5. The array is connected to the processor by vertical buses, with four 2
bit buses in each column. These buses are used for data I/O between the array
and the memory or the processor. Memory accesses can be initiated by the
reconfigurable array, but the data connection to memory is restricted to the
central 16 columns. However, the array can access the same memory hierarchy as
the main processor. The blocks in the leftmost column are dedicated control
blocks, which are used for interfacing tasks like interrupting the processor or
initiating the mentioned memory accesses. The basic unit of reconfiguration is
one row, which can be seen to as a kind of reconfigurable ALU, being formed
from relatively fine-grained blocks. To allow fast switching of configurations, the
array also features a distributed cache with depth four, which stores the least
recently used configurations. Although the array is partially reconfigurable, there
can be only one active configuration at a time.

Each block in the reconfigurable array features a datapath of 2 bits width and can
implement a function of up to four 2 bit inputs and two outputs. Wider datapaths
can be formed by joining blocks in the same row. A carry chain is provided to
support the build of wide adders, shifters or similar functions. The blocks
comprise two-bit lookup tables with three inputs to implement the functions as
well as two clocked registers. Three of the four inputs are fed into the lookup-
tables, forming one output value, while the second output is a direct copy of the
fourth input. The two outputs can be sent to three different paths leading to other
blocks.

The routing architecture of the reconfigurable array consists of horizontal and
vertical lines of different length. Conforming to the datapath of the blocks, these
lines are 2 bits wide. Unlike other architectures, the horizontal and vertical lines
are not segmented the same way, but are arranged in different patterns, being
optimized for different purposes. Several short horizontal lines with segments
spanning 11 blocks are provided to support multi-bit shifts along a row, while
vertical wires with different segment lengths are used for connecting functional
units laid out horizontally. In addition to this, some long horizontal lines span the
whole array to enable the broadcast of control signals to the blocks of a single
multi-bit operation.

Chapter 2 Coarse Grained Reconfigurable Architectures

30

2.1.6 The Reconfigurable Architecture Workstation
The Reconfigurable Architecture Workstation (RAW) project by the Computer
Architecture Group of MIT was first published in 1997 [WTSS97], [AABF97]
[Tayl99]. The idea of RAW is to provide a simple, highly parallel computing
architecture composed of several repeated tiles connected among each other by
nearest neighbor connections. The tiles comprise computation facilities as well as
memory, thus implementing a distributed memory model. All architectural
details are disclosed to the compilation framework. Especially, the processors lack
hardware for register renaming, dynamic instruction issuing or caching, which is
found in current superscalar processors. Due to the lack of these features, the
execution model uses statically scheduled instruction streams generated by the
compiler, thus moving the responsibility for all dynamic issues to the
development software. However, RAW provides the possibility of flow control as
a backup dynamic support, if the compiler should fail to find a static schedule.

lsb
16 logic blocks (32 bits)
aligned with processor data word

3 extra logic
 blocks

23 logic blocks per row

msb

1 control block
 for each row

88 88 88 88 88 88 88 88 88 88 8888

blocks
4 extra logic

4 memory buses

Figure 2-5: The Garp reconfigurable array architecture

31

Coarse Grained Reconfigurable Architectures Chapter 2

An overview on a typical RAW system consisting of a RAW microprocessor with
attached external memory is shown in figure 2-6. A RAW microprocessor is a
homogeneous array of processing elements called tiles. The prototype chip
features 16 tiles arranged in a 4 by 4 array. Each tile comprises a simple RISC-like
processor consisting of ALU, register file and program counter, SRAM-based
instruction and data memories, and a programmable switch supplying point-to
point connections to nearest neighbors. Early concepts of the architecture
[WTSS97] included also configurable logic to allow customized instructions and
overcome the limitations of a wide datapath. This concept has been abandoned in
the prototype implementation [Tayl99]. The CPU in each tile of the prototype is a
modified 32 bit MIPS R2000 processor [Henn90] with an extended 6-stage
pipeline, a floating point unit, and a register file of 32 general purpose and 16
floating point registers. Both the data memory and the instruction memory
consist of 32 Kilobyte SRAM. While the instruction memory is uncached, the data
memory can operate in cached and uncached mode. If the data memory should
be too small for an application, the virtualization of memories has to be done by
software, which is generated by the compiler.

Figure 2-6: Overview on a RAW system comprising a RAW
Microprocessor and external RAM

REGS

ALU

SWITCH

PC

SRAM

CPU
IMEM

DMEM
Node

Memory

Raw Microprocessor

Chapter 2 Coarse Grained Reconfigurable Architectures

32

The interconnect of the RAW architecture is done over nearest neighbor
connections being optimized for single data word transfer. Communication
between tiles is pipelined over these connections and appears at register level
between processors, making it different from multiprocessor systems. A
programmable switch on each tile connects the four nearest neighbor links to
each other and to the processor.

The RAW architecture provides both a static and a dynamic network, which are
multiplexed on the physical structure described above. The static network is
realized by a dedicated processor in the switch, which controls data transfers. The
compiler has to generate code for this switch processor based on a static schedule
for the data transfers. Thus, in the static network each data transfer is exactly
determined at compile-time. For cases where a static schedule is not possible, a
dynamic network is provided, which can perform data transfers in free cycles not
used by the static network. This network uses wormhole routing for the data
forwarding, with the routing information contained in a header put before the
data to be transmitted.

2.1.7 The Reconfigurable Multimedia Array Coprocessor
The Reconfigurable Multimedia Array Coprocessor (REMARC) [MiOl98a],
[MiOl98b] by Miyamori and Olukotun was introduced in 1998. The architecture
is a reconfigurable coprocessor aimed at multimedia applications like video
compression, video decompression, and image processing. The REMARC is
tightly coupled to a MIPS-II ISA [Kane88] RISC processor, which supplies
support for coprocessors. The processor has been extended by special
instructions to access the REMARC architecture in the same way as a floating-
point coprocessor is accessed.

An overview on the REMARC architecture is given in figure 2-7. The REMARC
consists of an 8 by 8 array of processing elements (also called nanoprocessors),
which is attached to a global control unit. The control unit manages data transfers
between the main processor and the reconfigurable array and controls the
execution of the nanoprocessors. It comprises an instruction RAM with 1024
entries, 64 bit data registers and four control registers.

The nanoprocessors consist of a local instruction RAM with 32 entries, an ALU
with 16 bit datapath, a data RAM with 16 entries, an instruction register, eight
data registers, four data input registers, and one data output register. The ALUs
can execute 30 instructions, including add, subtract, logical operations, shift
instructions, as well as some operations often found in multimedia applications
like minimum, maximum, average and absolute and add. Each ALU can use data

33

Coarse Grained Reconfigurable Architectures Chapter 2

from the data output registers of the adjacent processors via nearest neighbor
connect, from a data register, a data input register, or from immediate values as
operands. The result of the ALU operation is stored in the data output register.

The communication lines consist of nearest neighbor connections between
adjacent nanoprocessors and additional horizontal and vertical buses in each row
and column. The nearest neighbor connections allow the data in the data output
register of a nanoprocessor to be sent to any of its four adjacent neighbors. The
horizontal and vertical buses have double width (32 bits) and allow data from a
data output register to be broadcast to processors in the same row or column
respectively. Further, the buses can be used to transfer data between processors,
which are not adjacent to each other. As can be seen in figure 2-7, the eight vertical
buses are also used to connect the processor array to the global control unit and
to transfer data from or to the 64 bit data registers inside the controller. Hereby,
the 64 bit data word can be split up onto the eight buses.

Global Control Unit

64 bits

32
32

ROW 0

ROW 1

ROW 2

ROW 3

ROW 4

ROW 8

REMARC

NANO
00

COL.0 COL.1 COL. 2 COL. 3 COL. 4 COL.5 COL. 6 COL. 7

NANO
10

NANO
20

NANO
30

NANO
40

NANO
50

NANO
60

NANO
70

V
B

U
S

0

V
B

U
S

1

V
B

U
S

2

V
B

U
S

3

V
B

U
S

4

V
B

U
S

5

V
B

U
S

6

V
B

U
S

7

HBUS0

HBUS1

HBUS2

HBUS3

HBUS4

HBUS7

64 bits32 bits

to/from Main Processor
na

no
 P

C
/R

ow
 N

um
./C

ol
um

n
N

um
.

Figure 2-7: Overview on the REMARC architecture

Chapter 2 Coarse Grained Reconfigurable Architectures

34

During execution, the global control unit issues a global program counter value
each cycle, which is broadcast to all nanoprocessors. Each nanoprocessor then
uses this global value to index its local instruction memory and execute the
according operation. To support SIMD operations for multimedia applications, it
is possible to configure a whole row or column of processors to execute the same
operation with a single instruction, thus saving instruction memory in the
nanoprocessors.

2.1.8 The Morphoing System
The Morphoing System (MorphoSys) reconfigurable processing architecture
[LSLB99], [SLLK98], [LSLB00], first published in 1998 is a parallel system on one
chip comprising a standard processor tightly coupled to a reconfigurable co-
processor. Though MorphoSys can be used for general computing due to the
included processor, it is targeted to applications with inherent parallelism and a
high level of granularity, which can be accelerated by the reconfigurable part. In
spite of a preference for word-level applications, which is caused by the coarse
granularity of the MorphoSys processing elements, the system is also flexible
enough to support operations at bit level.

The complete MorphoSys chip comprises a core processor, a frame buffer, a DMA
controller, a context memory, and an array of 8 by 8 reconfigurable cells. The core
processor is a MIPS-like TinyRISC CPU with an extended instruction set for
manipulation of the DMA controller and the reconfigurable array. The frame
buffer is an internal data memory for blocks of intermediate results, similar to a
data cache. This memory is logically organized into two sets, which can be used
independently, so overlapping load and store is possible. Each set is itself divided
into two banks with 64 rows of 8 bytes each, resulting in 128 times 16 bytes for the
whole memory. The frame buffer is connected by a horizontal bus of 128 bits
width to the reconfigurable array, so each row of cells gets a segment of 16 bits
from the frame buffer. The DMA controller is used for both loading configuration
data from the main memory and for data transfers between the main memory
and the frame buffer. The context memory is used to store the configuration data
for the reconfigurable array. This memory supports multiple contexts, which can
be changed dynamically during execution. The configuration model of the
reconfigurable cell array is restricted to the concurrent configuration of all cells in
either one row or one column of the array by broadcasting a configuration word
to all cells in the according row or column, which will then perform the same
operation. Thus, the context memory features two blocks (one for the rows, one
for the columns), each block containing eight configuration sets (one for each row
or column) with sixteen context words.

35

Coarse Grained Reconfigurable Architectures Chapter 2

The general structure of the configurable cell array is shown in figure 2-8 (the
figure shows the same array twice, with different parts of the routing structure).
The reconfigurable part of MorphoSys comprises an 8 by 8 array of mesh
connected processing elements, also called reconfigurable cells. The array is
divided into four quadrants of 4 by 4 cells each. A single reconfigurable cell
features a 16-bit datapath, comprising an ALU-Multiplier, a shift unit, two input
multiplexers, a register file with four 16 bit registers, and a 32 bit context register
for storing the configuration word. The ALU-multiplier can perform the standard
arithmetic and logical operations as well as a multiply-accumulate operation in a
single cycle. It has four inputs, two over the input multiplexers, one from the
output register, and one connected to the context register to load a 12 bit operand
contained in the configuration word. The multiplexers are used to select
operands from the register file, the data bus from the frame buffer, or from other
cells over the interconnect structure.

The interconnect network of MorphoSys features three layers. First, all cells are
connected to their four nearest neighbors. Second, each cell can access data from
any other cell in the same row or column of the same array quadrant. These first
two layers of interconnect are depicted in figure 2-8a. The third layer of
interconnect, which is shown in figure 2-8b, consists of buses spanning the whole
array and allowing transfer of data from a cell in a row or column of a quadrant
to any other cell in the same row or column in the adjacent quadrant. In addition
to the shown interconnect resources, two horizontal 128 bit buses connect the

a) b)

Figure 2-8: Architecture of the MorphoSys reconfigurable cell array:
a) Nearest neighbor connects and inter-quadrant lines
b) Same architecture showing buses spanning the whole array

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

quadrant

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

Chapter 2 Coarse Grained Reconfigurable Architectures

36

array to the frame buffer: An operand bus for data transfer to the array, and a
result bus for data transfer to the frame buffer. Like mentioned in the description
of the frame buffer, the 128 bits of the buses are shared among the eight rows of
the array, giving each row access to a 16 bit segment of each bus.

2.1.9 The CHESS Array
The CHESS architecture [MVS99] by Hewlett Packard Laboratories was
introduced in 1999 and is intended for the implementation of multimedia
applications. CHESS is aimed as a component of an ASIC or processor datapath.

An overview of the CHESS array is given in figure 2-9. The architecture consists
of ALUs and switchboxes. These components are arranged in a chessboard-like
pattern with each switchbox being surrounded by four ALUs and each ALU
being surrounded by four switchboxes. To support applications with memory
requirements for intermediate results, embedded RAMs can be provided
organized in vertical stripes inside the array. Additionally, switchboxes can be
converted to 16 word by 4 bit RAMs if needed.

The ALUs and all routing resources are four bits wide. The ALUs feature two
inputs and one output for four-bit data words, as well as one single-bit input and
one output for carry. The instruction set features 16 operations, including add and
subtract, nine logical operations, two multiplex operations and three tests using
the carry bit as condition output. It is possible to connect the data output of an
ALU to the configuration input of another one. Thus, the functionality of an ALU
can be changed in a limited way on a cycle-per-cycle basis during runtime by
configuration data generated inside the array. However, a way for partial
configuration from outside is not provided. In order to enable operations, which
cannot be mapped onto an ALU or to make fine-grained interconnections not
supported by the four-bit wiring, the RAMs in the switchboxes can also be used
as a 4-input, 4-output LUT.

The routing structure of the CHESS array consists of segmented four-bit buses of
different length. There are 16 buses in each row and column of the array. Four
buses are for local connections, spanning one switchbox. Due to the chessboard
layout of the array, these local connections are sufficient to link an ALU to all of
its eight surrounding neighbors, as shown in figure 2-9 by the grey arrows. In
addition to the four local buses, there are two buses of length 1, crossing one ALU
and half a switchbox on either side. Longer buses have lengths of powers of 2. A
bus of length 2n crosses 2n ALUs and half a switchbox on either side. These buses
are laid out in pairs with the ends of one bus in the middle of the other one. There
are four buses of length 2, and two buses of length 4, 8 and 16 respectively.

37

Coarse Grained Reconfigurable Architectures Chapter 2

2.2 Architectures Based on Linear Arrays
A more uncommon arrangement of processing elements is one or several linear
arrays, typically featuring connections between the neighbors. This structure is
motivated by the idea to map pipelines onto it, with each processing element
featuring one pipeline stage. This works well for linear pipelines without forks.
If there are forks in the pipeline, which would need a two-dimensional
realization, additional routing resources are needed, which are normally
provided by longer lines spanning the whole or a part of the array, often being
segmented. The linear structure allows a direct mapping of pipelines, with the
mentioned problems for forks.

Two architectures appear as examples for a linear array structure. The RaPiD
architecture [ECFF96] by C. Ebeling, D. Cronquist, and others, is based on the
idea to provide a number of different computing resources, like ALUs, RAMs,
Multipliers, and Registers. Unlike most mesh-based architectures, the resources
are not evenly distributed. Instead, the fact that the architecture extends only in
one direction allows to provide e.g. three times as much ALUs than multipliers.
While RaPiD uses a mostly static reconfiguration model, the PipeRench

Figure 2-9: CHESS array architecture overview (excerpt)

ALU ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Embedded

RAM

Embedded
RAM

Chapter 2 Coarse Grained Reconfigurable Architectures

38

architecture [CWGS98] relies on dynamic reconfiguration, allowing the
configuration of a processing element to change in each execution cycle. Besides
mostly unidirectional nearest neighbor connects, this architecture provides also a
global bus for data transfer.

2.2.1 The Reconfigurable Pipelined Datapaths
The Reconfigurable Pipelined Datapath (RaPiD) described in [ECFF96], [ECF96],
[CFFF99] was developed in 1996 by Ebeling et al. It is aimed to speed up highly
regular, computation-intensive tasks by implementing deep application-specific
pipelines.

RaPiD provides a number of computational resources like ALUs, multipliers,
registers and memory modules, which can implement application-specific
datapaths. These resources are arranged in a linear array, which is configured to
form a mostly linear pipeline. This array is divided into identical basic cells,
which are replicated to form a whole array. The RaPiD-1 prototype features 16
cells, each cell containing an integer multiplier, three integer ALUs, six general-
purpose datapath registers and three local memories with 32 entries. All
datapaths as well as the memories are 16 bits wide. The ALUs are capable of the
usual logical and arithmetic integer operations and can be chained for wide-
integer operations. The multiplier processes two 16 bit input data words to one
32 bit output word. The datapath registers can be used to store constants or
temporary values, to implement additional multiplexers, to support routing, and
for additional pipeline delays. The local memories can be used for block oriented
data processing. Each memory has a specialized datapath register featuring an
incrementing feedback path. An overview on the general basic cell architecture is
given in figure 2-10.

The routing architecture of the RaPiD consists of several parallel segmented 16 bit
buses, which span the whole array. The length of the bus segments varies in
different tracks. In some tracks, adjacent bus segments can be merged by
configurable bus connectors (see figure 2-10), which can also implement pipeline
delays if needed. The functional units can access all buses for reading and writing
data. For reading from the bus, each functional unit features an input multiplexer
of n:1. One multiplexer input is reserved for constant zero, another one for a
feedback line (the latter one does not appear any more in [CFFF99]). Thus, n-2
inputs are for the buses, and therefore the number of buses is also n-2. The output
drivers can put the result of a functional unit onto one or more bus segments.

The data to be processed enters and leaves RaPiD via I/O streams at each end of
the datapath. For this purpose, the linear array is accompanied by a stream
generator, which also contains the memory interface. The stream generator

39

Coarse Grained Reconfigurable Architectures Chapter 2

contains address generators, which are optimized for nested loop structures,
associated with FIFOs. The address sequences for the generators are determined
at compile-time.

For configuration, the RaPiD architecture uses a mix of static configuration and
dynamic control. The biggest part of control signals (e.g. for tristate drivers and
bus connectors) is determined at compile time and configured statically, while
about a quarter of the signals (e.g. for multiplexers and ALUs) are determined
dynamically during run time. This is done by a programmed controller along
with a configurable path with buses and some logic gates to distribute the
instruction bits over the architecture. The configurable control path follows the
same scheme like the routing network for the data, consisting of several
segmented buses.

2.2.2 The PipeRench Architecture
The PipeRench architecture [CWGS98], [GSMB99], [BuGo99] is a coprocessor to
speed up pipelined applications, introduced in 1998 by Goldstein, Schmit et al. It
aims to adapt the concept of virtual memory to reconfigurable hardware,
resembling a virtual hardware. The idea is to provide a hardware comprising

A
L
U

R
A
M

M
U
L
T

A
L
U

R
A
M

A
L
U

R
A
M

Bus Connectors Input Multiplexers Output Drivers

Datapath
Registers

Figure 2-10: Overview on the general basic cell architecture of RaPiD

Chapter 2 Coarse Grained Reconfigurable Architectures

40

several reconfigurable pipeline stages (called stripes in PipeRench terminology).
An application pipeline is mapped onto the PipeRench, whereby the physical
hardware is kept transparent to the application. This is done by removing
temporary unused pipeline segments from the hardware, if necessary, thus
implementing a time multiplexing of the physical computation resources.
According to this concept, the PipeRench relies highly on fast partial dynamic
pipeline reconfiguration as well as run time scheduling of both configuration
streams and data streams.

An overview of the architecture is given in figure 2-11. The PipeRench consists of
a reconfigurable fabric, a configuration memory, a state memory, an address
translation table (ATT), four data controllers, a memory bus controller and a
configuration controller. The configuration memory is on-chip and connected to
the fabric with a wide bus, enabling one complete pipeline stage to be configured
with one memory read. In a prototype described in [CWGS98], the configuration
memory has a capacity of 256 entries with 1024 bits each. The state memory is
used to save the current register contents of a stripe, if it is swapped out. The
address translation table is used for storing the address in the state memory for
the state of a given stripe. The four data controllers are connected to the fabric by
four global buses. Each of the buses is dedicated to either the storing of a stripe
state, the restoring of a state, the input of data or the output of data. The
controllers may all be used for data input or output where they interface between
the fabric and the memory bus controller. For the task of state storing and
restoring, only the two rightmost controllers may be employed, which act as
interface between the fabric and state memory, when used this way. The data
controllers are also responsible for the generation of address sequences for both
input and output data streams. This task includes the run time scheduling of
memory accesses. The address sequences that can be generated are affine
functions of the loop index. The data controllers may also contain caches to
exploit locality or FIFOs to enhance burst mode memory accesses. The memory
bus controller handles access of the data controllers to off-chip memory by
arbitrating accesses to a single memory bus. This unit is also used to load the
configuration memory. The configuration controller is responsible for the tasks of
interfacing the fabric to the host, mapping of the configuration words to the
hardware, run time scheduling (including time multiplexing and handling of the
virtualization), and managing the configuration memory.

The reconfigurable fabric of the PipeRench allows the configuration of a pipeline
stage in every cycle, while concurrently executing all other stages. The
architecture of the reconfigurable fabric is sketched in figure 2-12. The fabric
consists of several (horizontal) stripes. Each stripe is composed of interconnect
and processing elements (PEs in figure 2-12), which contain registers and ALUs.
The ALUs are implemented as 3-input lookup tables (one for each datapath bit).

41

Coarse Grained Reconfigurable Architectures Chapter 2

The three inputs of each look-up table are divided into 2 data inputs and one
control input. The ALU in each PE is accompanied by a barrel shifter for left shift
and extra circuitry for carry chains, zero detection, etc. The carry lines of
neighboring ALUs in one stripe can be cascaded to form wider ALUs.
Furthermore, In the prototype implementation, a stripe provides a total datapath
of 128 bits, which is divided into 32 ALUs with 4 bits each. The whole fabric
features 28 stripes.

The interconnect scheme of PipeRench features local interconnect inside a stripe
as well as local and global interconnect between stripes. The global interconnect
is realized by the four global buses and is used for data input and output to and
from the pipeline. The local interconnect is implemented by an according
network provided in each stripe. This network, which is implemented as a word-
level full crossbar, allows each PE to access operands from outputs of the previous
stripe as well as from any other PE in the same stripe. However, no connections
lead to a previous stripe, thus no long feedback loops are possible, as any cycle
must be contained within one stripe.

State
Memory

Ctrl
Bits

Fabric A
T

T

M
em

or
y

B
us

C
on

tr
ol

le
r

C
on

fig
ur

at
io

n
C

on
tr

ol
le

r

Data

Address

On-Chip Configuration
Memory

DC DC DC/R DC/S

Figure 2-11: Overview on the PipeRench architecture

Chapter 2 Coarse Grained Reconfigurable Architectures

42

2.3 Crossbar-Based Architectures
A full crossbar switch allows arbitrary connections between processing elements,
making it the most powerful communication network. The routing task is thus a
simple operation. However, due to the high implementation cost of a full
crossbar, the two architectures presented in this section implement a reduced
crossbar, which again implies the need for a routing process to connect the
processing elements.

The example architectures were both published by J. Rabaey et al. from
University of Berkeley. The PADDI architecture [ChRa90] was meant for the fast
prototyping of DSP datapaths, featuring eight processing elements connected by
a multilayer crossbar. The PADDI-2 [YeRa93], which is a successor to the PADDI,
featured 48 processing elements. While in the PADDI, all PEs were connected to
the crossbar, such an implementation would be too expensive for 48 PEs. Thus, a
hierarchical interconnect structure was chosen, featuring linear arrays of PEs
forming clusters, and a restricted crossbar for the interconnect of the clusters. This
hierarchical interconnect structure has again an impact on the routing for this
architecture.

LU

LU

ter File

ALU

ALU

PE 1

PE 1

Interconnect

ALU

ALU

PE N-1

PE N-1

...

...

...gister File Register File Register F

Register File Register Fil

Network

Interconnect
Network

Figure 2-12: Architecture of the PipeRench reconfigurable fabric

43

Coarse Grained Reconfigurable Architectures Chapter 2

2.3.1 The Programmable Arithmetic Device for Digital Signal
Processing

The PADDI (Programmable Arithmetic Device for Digital Signal Processing)
architecture was first described in 1990 by Chen and Rabaey [ChRa90], [ChRa92],
[CGNS92a]. PADDI addresses the problem of rapid prototyping for computation-
intensive DSP data paths.

The PADDI architecture consists of clusters of eight arithmetic execution units
(EXUs), which are connected via a crossbar switch. Each EXU is accompanied by
a local controller. Clusters can communicate with each other over 128 I/O pins
connected to the crossbar switch. The prototype implementation of PADDI
featured four clusters on one chip. An overview of the PADDI architecture is
given in figure 2-13.

The EXUs contain the computational units as well as storage facilities. Each EXU
features one 16 bit ALU, which supports addition, subtraction, accumulation,
comparison, maximum-minimum and right shifting using a logarithmic shifter.
Arithmetic can be performed for signed or unsigned numbers. To affect program
flow, a status flag (a Š b) is provided. At the ALU inputs, two 16 bit wide register
files with six registers each are provided, which can be used to store temporal
data. The registers are dual-ported and can be configured as delay lines for
pipelining and retiming of operations. At the output of each EXU, an optional
pipeline register is available. Two EXUs can be concatenated for double
arithmetic accuracy of 32 bits.

EXU
C
T
L

EXU
C
T
L

EXU
C
T
L

EXU
C
T
L

EXU
C
T
L

EXU
C
T
L

EXU
C
T
L

EXU
C
T
L

switch
I/OI/O

Figure 2-13: Overview on the PADDI architecture

Chapter 2 Coarse Grained Reconfigurable Architectures

44

For the interconnection of the EXUs, a crossbar switch is employed, which is used
for routing both data and status flags. While the data routing can be changed in
each cycle dynamically at run time, the routing of the status flags is static and
determined at compile time.

The control of the architecture is done hierarchically in order to handle the
relatively high instruction bandwidth for all eight EXUs. On a first level, an
external global controller broadcasts 3 bit global instructions to each EXU. The
instructions from the global controller are decoded on a second level by local
control units in each EXU into a 53 bit instruction word. The local controllers in
each EXU are SRAM-based nanostores, which are serially configured at setup-
time. Each SRAM contains eight words, allowing eight different operations to be
performed. The execution units and the external controller communicate status
information to affect both the local and global control flow.

2.3.2 The PADDI-2 Architecture
In 1993, a successor to the PADDI architecture, called PADDI-2 [YeRa93],
[Yeun95], [YeRa95] was developed at Berkeley University. This architecture
featured a data-driven execution mechanism. Although the basic architectural
principles of the original PADDI were kept, the PADDI-2 has several differences.
An overview of the PADDI-2 is shown in figur e2-14.

Figure 2-14: The PADDI-2 architecture

Network
P47

P48

P46

P45

P1
P2
P3
P4

P5
P6
P7
P8

P9
P10
P11
P12

P13
P14
P15
P16

P17
P18
P19
P20

P21
P22
P23
P24

P25
P26
P27
P28

P29
P30
P31
P32

P33
P34
P35
P36

P37
P38
P39
P40

P41
P42
P43
P44

P45
P46
P47
P48

b
re

ak
-s

w
it

ch

b
re

ak
-s

w
it

ch

I/O I/O I/O I/O

I/O I/O I/O I/O

6 x 16b

16 x 6 switch matrix

Level-2

16 x 16b

Level-1 Network

4-PE Cluster

45

Coarse Grained Reconfigurable Architectures Chapter 2

The PADDI-2 has been implemented on a chip featuring 48 processing elements
(or EXUs in original PADDI terminology) with a 16 bit datapath. Each processing
element features a 16 bit ALU with 12 instructions including add, add with carry-
in, subtract, subtract with carry-in, logical or, logical and, logical xor, logical not,
arithmetic up shift, arithmetic down shift, booth multiply and select.
Multiplication can be done in eight cycles on a single processor. Alternatively,
eight processors can be pipelined, resulting in one multiplication product in
every cycle. Using the carry-in, the add and subtract operations can be
concatenated for datapaths with a width of a multiple of 16 bits. Each processing
element provides also six general purpose registers, which can be configured as
up to three input queues for the ALU, three scratch pad registers and an
instruction memory (nanostore) with eight entries as well as a control unit.

In contrast to the original PADDI architecture, the processing elements of PADDI-
2 are packed in 12 clusters of four elements each. Thus, the interconnect is
hierarchical with two levels. On the first level, each cluster features six 16 bit data
buses and four one bit control buses, providing intra-cluster interconnect. On the
second level, 16 data buses and eight control buses can be used for inter-cluster
interconnect. They can be broken up into shorter segments by reconfigurable
switches. The eight clusters in the corners of the chip provide additional I/O
connections to the outside. As the crossbar switch of the original PADDI for
arbitrary connections between processing elements has been given up, the
placement and routing for PADDI-2 is more sophisticated.

The PADDI-2 architecture employs a distributed data-driven control strategy
[YeRa92] implemented by a hardware handshake protocol for synchronization. If
a sender or a receiver is not ready for a data transfer, all participants are stalled.
By this mechanism, the need for global synchronization and retiming during the
mapping process is eliminated.

Chapter 2 Coarse Grained Reconfigurable Architectures

46

