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Abstract 

In this paper, we survey the design space o f  a new class of  architec- 

tures called Grid Processor Architectures (GPAs). These architectures 

are designed to scale with technology, allowing faster clock rates than 

conventional architectures while providing superior instruction-level 

parallelism on traditional workloads and high performance across a 

range o f  application classes. A GPA consists o f  an array o f  ALUs, 

each with limited control, connected by a thin operand network. Pro- 
grams are executed by mapping blocks o f  statically scheduled instruc- 

tions to the ALU array and executing them dynamically in dataflow or- 

der This organization enables the critical paths o f  instruction blocks 

to be executed on chains of  ALUs without transmitting temporary val- 

ues back to the register file, avoiding most of  the large, unscalable 

structures that limit the scalability of  conventional architectures. Fi- 
nally, we present simulation results o f  a preliminary design, the GPA- 

1. With a half-cycle routing delay, we obtain performance roughly 
equal to an ideal 8-way, 512-entry window superscalar core. With 

no inter-ALU delay, perfect memory, and perfect branch prediction, 

the 1PC of  the GPA-1 is more than twice that of  the ideal superscalar 
core, achieving an average of  l l IPC across nine SPEC CPU2000 and 
Mediabench benchmarks. 

1 Introduction 

Microprocessor performance has improved at a rate of  50- 
60% per year over the past two decades. In the 1970's, 
wider datapaths and hardware support for memory manage- 
ment contributed to most of  the performance improvement. 
In the 1980's, microprocessors benefited from levels of inte- 
gration that allowed mainframe techniques to fit on a single 
chip: memory hierarchies, speculation, and superscalar exe- 
cution. Since then, however, the bulk of performance growth 
has come from faster clock rates. Despite copious research 
efforts, instruction-level parallelism has improved much less 
than the clock in actual products; current high-end superscalar 
processors typically sustain one instruction per cycle, and of- 
ten much less. Comparatively, through the I990's,  four-fifths 
of  performance growth came solely from faster clock rates: a 
40% annual increase from 33MHz in 1990 to over 2GHz in 
2001. 

Clock rate improvements have come both from technology 

scaling and deeper pipelines, but more from the latter, with 
pipeline depths increasing by nearly a factor of four over the 
last decade. This growth will soon end, as deeper pipelines 
reach limits on the number of gates per pipeline stage [1]. 
Once that limit has been reached, clock rates will increase at 
best with gate speeds, which are estimated to improve at a rate 
of 12-19% per year [22]. Further performance improvements 
must come from higher levels of instruction- and thread-level 
parallelism. 

Increasing wire resistance will make achieving higher ILP 
in conventional architectures more difficult than today. Agar- 
wal et al. estimate that the latency to transmit a signal across 
one dimension of  a 35rim chip will be approximately 30 clock 
cycles, even with optimal repeater placement [I]. In addition 
to limiting the number of  devices useful to a conventional core, 
the wire delays will make memory-oriented microarchitectural 
structures slower, making it difficult to sustain even current 
levels of  ILP. Slow instruction issue windows, rename tables, 
branch predictors, bypass networks [17], register files [13], 
and caches [12] will reduce IPC for a given clock at feature 
sizes under 100 nanometers. These issues have already be- 
come first-order design constraints. For example, the Alpha 
21264 uses clustered functional units and a partitioned reg- 
ister file to overcome wire delays, while the Intel Pentium 4 
devotes two pipeline stages solely for routing information - -  
instruction distribution and delivery of values to the register 
file. 

Future microprocessors must thus achieve ILP consider- 
ably higher than today's designs, even while being partitioned, 
and do so with a high clock rate. These future processors must 
exploit increased device counts to meet the above goals, but 
must do so while considering the increased communication de- 
lays and partitioning requirements [25]. 

In this paper, we introduce a class of architectures intended 
to address these problems faced by future systems. Grid Pro- 
cessor Architectures (GPAs for short) are designed to enable 
both faster clock rates and higher ILP than conventional ar- 
chitectures, even as devices shrink and wire delays increase. 
The computation core of a GPA consists of a two-dimensional 
array of  nodes, each containing a small instruction buffer and 
one execution unit. These fine-grained computation nodes are 
connected using a dedicated communication network for pass- 
ing operands and data, and are controlled by a single thread 
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of control that maps large blocks of instructions to the nodes 
en masse. This organization eliminates the centralized instruc- 
tion issue window and converts the conventional broadcast by- 
pass network into a routed point-to-point network. Similar to 
VLIW architectures, a compiler is used to detect parallelism 
and statically schedule instructions onto the computation sub- 
strate, such that the topography of the dataflow graph matches 
the mapping. However, instructions are issued dynamically 
with the execution order determined by the availability of in- 
put operands. 

In a GPA, few large structures reside on the critical exe- 
cution path, enhancing scalability as wire resistance increases. 
Out-of-order execution is achieved with greatly reduced reg- 
ister file bandwidth and with no associative issue window or 
register rename table. Compiler-controlled physical layout en- 
sures that the critical path is scheduled along the shortest phys- 
ical path, and that banked instruction caches reside near the 
units to which they will issue instructions. Finally, large in- 
struction blocks are mapped onto the nodes as single units of 
computation, amortizing scheduling and decode overhead over 
a large number of instructions. 

In a GPA, the register file bandwidth is also reduced. Our 
experiments show that register file writes are reduced by 30% 
to 90% using direct communication between producing and 
consuming instructions. On a set of conventional uniprocessor 
(SPEC CPU2000 and Mediabench [14]) benchmarks, our sim- 
ulation results show IPCs of between one and nine, running on 
a substrate that can likely be clocked faster than conventional 
designs and that will scale with technology. Assuming small 
routing delays, perfect memory and perfect branch prediction, 
the GPA averages eleven instructions per cycle across these 
benchmarks. 

The remainder of this paper is organized as follows. Sec- 
tion 2 describes the block-atomic execution model of programs 
on GPAs and how programs are mapped onto them. Section 3 
describes the GPA-1, one possible implementation of a Grid 
Processor Architecture. Section 3.3 presents experimental re- 
suits that both characterize pertinent aspects of program be- 
havior and show potential and actual performance gains. Sec- 
tion 5 discusses design tradeoffs and extensions to the GPA 
class of machines. Section 6 describes related work pertaining 
to wide-issue and dataflow-oriented machines. Finally, Sec- 
tion 7 concludes with a discussion of the strengths and weak- 
nesses of GPAs and plans for future work. 

2 The Block-Atomic Execution Model  

The execution model implemented on Grid Processor Archi- 
tectures treats groups of instructions as an atomic unit for 
fetching, mapping onto the execution resources, and commit- 
ting. The execution substrate is a collection of ALUs, each of 
which is architecturally visible and named. For simplicity in 
this paper, we assume that all ALUs are homogeneous and can 
execute any instruction. 

2.1 Instruction Groups 

In the block-atomic execution model, instructions are placed 
into groups by the compiler. A group has no internal transfers 

of control; taken branches (and the last instruction in a group) 
transfer control to a succeeding group. A group could thus 
be a basic block, a predicated hyperblock [16], or a run-time 
trace [21]. 

Data used and consumed by a group are of three types: 
(1) group outputs, which are values created within the group 
and used by subsequent groups, (2) group temporaries, which 
are values that are produced and consumed within the group, 
and (3) group inputs, which are values produced by preced- 
ing groups and must be read when the execution of the group 
begins. Under block-atomic execution, group temporaries can 
be forwarded directly from producers to consumers, without 
ever being written back to any central storage. Group outputs, 
however, must be written to a central storage like a register file 
when the group commits. The output of control transfer in- 
structions which specify the address of the succeeding group 
are also treated as group outputs. Modifications to memory are 
maintained in a temporary storage until the group is commit- 
ted. 

2.2 Group Execution 

The compiler statically assigns each instruction in a group to 
one of the named ALUs, and no ALU is assigned more than 
one instruction. Special move instructions, used to read group 
inputs, are assigned to the register file. Execution of an in- 
struction group proceeds as follows: A group is fetched and 
mapped onto the ALUs in the execution substrate at once. 
Each instruction in the group is stored in the instruction buffer 
at the ALU (similar to a reservation station) to which it was 
statically assigned. The m o v e  instructions issued at the regis- 
ter file read group inputs and forward the values to the appro- 
priate ALUs. 

When all of an instruction's operands have arrived at an 
ALU, the instruction is executed. This data-driven execution 
model is similar to that of a traditional dataflow machine [2, 9]. 
When the instruction completes, its result is forwarded to the 
ALUs holding consuming instructions, and/or to the register 
file if the result is a group output. 

The physical destinations of the operation's result are en- 
coded explicitly into an instruction. Each destination is re- 
ferred to by the name of the ALU, so that the result can be 
sent directly to the target instruction. Operands are delivered 
directly from producers to consumers (point-to-point) in the 
grid network rather than being broadcast to all ALUs. Since 
all operands are forwarded to the location where instructions 
are buffered, an instruction does not encode the source loca- 
tions or register names of its inputs, only its outputs. 

When all of the instructions in a group have completed, the 
group is committed-group outputs are written back to the reg- 
ister file and updates to memory are carried out. Subsequently, 
the group is removed from the ALUs, and the next group is 
mapped onto the execution substrate. In the event of an ex- 
ception being raised by any instruction in a group, the entire 
group is re-executed after the the exception is serviced. Some 
implementations of the execution model overlap both fetch, 
mapping, and execution of the subsequent group with the exe- 
cution of the current group. 

Figure 1 shows an example of the mapping and execution 
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a) Code schedule 

Ii) add r2, r7, r8 
I2) Id rl, r8, 0x0f 
I3) add r2, r2, r2 
I4) add r3, r2, rl 
I5) beqz r3, 0xdeac 

b) Dataflow graph 

I 

c) Block-atomic code 

I~DVE-i: r8, ALU-I, ALU-2 
MOVE-2: r7, ALU-I 

Ii~ALU-i: add, ALU-3 
12~ALU-2: id 0x0f, ALU-4 
I3 -~ALU- 3 : add, ALU- 
I4~ALU-4: add, ALU-5, r3 
I5 ~-ALU- 5 : beqz 0xdeac 

Figure 1: Simple Example of  Block-Atomic Mapping 

d) Physical mapping 

[ Register file t 

© ) ©  

00  \0 
Branch ~, 
register R3 

of a group onto a GPA. Part (a) depicts tile original code frag- 
ment for a basic block consisting of  five instructions and part 
(b) shows the corresponding dataflow graph (DFG). Group in- 
puts are r 7  and r 8 ,  while r 3  is the group output. The block 
is scheduled for five ALUs, named ALU-1 through ALU-5, as 
shown in part (c). Part (d) shows the physical mapping on an 
execution substrate, consisting of  a 4x4 array of  ALUs. The 
two m o v e  instructions shown in part (c) are mapped at the reg- 
ister file. They read the group inputs anti forward them to the 
consumers at ALU-1 and ALU-2. Temporaries are produced 
by the instructions at ALU- 1, ALU-2, ALU-3, and ALU-4 and 
are not written to the register file. The output of  14 is a group 
output and is written to the register file. The branch instruc- 
tion 15 implicitly writes its result to a special branch register, 
which is used to transfer control to the next hyperblock. 

2.3 Key Advantages 

The block-atomic model will be effective if  the number of 
instructions in the group is large enough to yield long de- 
pendence chains that can benefit from the ALU chaining in 
the grid. The experimental results in Section 3.3 show that 
compiler-generated group sizes are significant, when predica- 
tion is used to eliminate control flow hazards. 

This execution model addresses several of  the challenges 
for microprocessor performance scaling described in Sec- 
tion I. There are fewer large structures involved with the 
execution: there is no centralized, associative issue window, 
no register renaming table and there are fewer register file 
reads and writes. Despite the lack of these structures, instruc- 
tions can execute in dynamic order, without expensive hazard 
checking or a broadcasting bypassing and forwarding network 
that scales poorly with increasing execution width [17]. Fur- 
thermore, if the physical instruction layout corresponds to the 
dataflow graph, communication from producers to consumers 
will take place along short, point-to-point wires. Instructions 
off of the critical path can afford longer communication la- 
tencies between more distant ALUs. The physical layout of 
ALUs is exposed to the instruction scheduler, so that the wire 
and communication delays can be used to help the scheduler 
minimize the critical path. In the next section, we describe 
one implementation of  a GPA that realizes this block-atomic, 
data-driven execution model. 

3 A GPA Implementat ion  

In Figure 2a, we show a high-level diagram of the GPA-1, 
our first Grid Processor Architecture design. ALUs are ar- 
ranged in an m by n array, shown as 4-by-4 grid in the ex- 
ample. In this implementation, instructions are delivered by 
instruction cache banks on the left side of  the array. The block 
sequencer and block termination control determines which in- 
struction groups to map to the grid and when each group has 
been completed and can be committed. Instruction group in- 
puts are fetched from the register file banks and injected from 
the top of the grid. Operands are passed from producer to con- 
sumer instructions through a lightweight network, shown as a 
mesh augmented with diagonal channels. Memory accesses 
are routed to the primary cache banks located on the right side 
of  the grid through a separate network. 

The architecture of a grid node is shown in Figure 2b. Note 
that in this terminology, a node refers to a functional unit with 
the logic shown in the figure, rather than a full-fledged proces- 
sor with its own program counter. Each node contains input 
ports for arriving operands, instruction and operand buffers, 
and a router that delivers values to the output ports and the grid 
network. The buffers hold instructions and input operands un- 
til all operands have arrived and the instruction can execute. 
The router can deliver both values produced by the node 's  
ALU and those being routed through the node to a destination 
elsewhere in the grid. 

The instruction and operand buffers each have multiple en- 
tries, enabling multiple instructions to be mapped to a single 
physical node. A frame consists of  a single instruction slot in 
all of  the grid nodes and can be pictured as a single virtual 
grid. Thus each additional slot provides another frame and a 
virtual grid of  nodes. For scheduling and dynamic data for- 
warding purposes, the (x,y) coordinate of  the grid node in the 
array along with the slot label is used as the name of the desti- 
nation. In this example, one frame consists of 16 instructions, 
using one instruction slot in each of  the 16 grid nodes. An 8x8 
grid with 8 frames would thus be capable of  mapping a total 
of  512 instructions at a time. Groups larger than one frame 
are allowed to span multiple frames. Free frames can be used 
to map speculatively fetched groups. Below, we describe the 
other major features of  our design. 
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(a) 

Input ports 

fo) 

Block termination and control I 
Figure 2: High-level Grid Processor organization 

Output ports 

3.1 Instruction fetch and map 

Each group of instructions mapped to the grid consists of one 
predicated hyperblock. These hyperblocks have a single point 
of entry, and may have multiple exits, but have no internal 
transfers of control. The primary instruction cache consists of 
multiple banks, in which one bank is associated with each row. 
When a hyperblock is mapped onto the grid, each bank reads a 
row's worth of instructions and delivers those instructions hor- 
izontally into the grid along the instruction distribution wires, 
taking four cycles. After a hyperblock is mapped, branch and 
target predictors in the block sequencer predict the succeeding 
hyperblock, and begin fetching and mapping it onto the grid 
prior to the completion of the previous hyperblock. 

3.2 Instruction execution 

At the top of the grid resides the register file, which in this 
example contains one three-ported bank per column. When a 
hyperblock is mapped onto the grid, the corresponding move 
instructions are fetched and delivered to queues at the appro- 
priate register file banks. Each bank can issue two move in- 
structions per cycle, injecting two operands into the grid. The 
move instructions contain the register number to be read and 
the location of up to three target ALUs within the grid. 

When an operand arrives at the node, the control logic at- 
tempts to wakeup, select, and issue the instruction correspond- 
ing to the frame identifier of the arriving operand. If all of 
the operands are present, the instruction is issued to the ALU. 
Upon completion, its result is sent to the output router with the 
frame identifier and the address of up to two target ALUs. If 
no new operand arrives at the node in a given cycle or if the in- 
struction whose operand arrived must wait for more operands, 
any other ready instruction is selected and issued. 

Operand routing: Because the physical locations of con- 
sumers are explicitly encoded within producer instructions, 
there is a trade-off associated with the instruction fanout. If 
instructions encode a large number of target consumers, each 
instruction may be overly large. Too few targets results in ex- 
tra instruction overhead to replicate the values within the grid. 
In this example, we support three consumers per instruction, 

since our results show that over 70% of producer instructions 
have three or fewer consumers. If an instruction has more 
than three consuming instructions for a particular value, a data 
movement instruction called a split instruction can be in- 
serted into the schedule to forward results to multiple con- 
sumers. 

Inter-node network: Four kinds of delays inhibit back-to- 
back execution of instructions in consecutive cycles: a) routing 
delays, b) transmission/wire delays, c) instruction wakeup de- 
lay and d) delays induced by contention for the wires/ports at 
the nodes. For instructions on the critical path all these delays 
should be minimized. From a sensitivity analysis of these fea- 
tures using simulation results, we discovered that the amount 
of contention in the grid is not substantial and two I/O ports at 
each node is sufficient. The router and wire delays, however, 
are the single most important factor in overall performance of 
the GPA- 1. 

3.3 Hyperblock control 

To increase instruction group size and reduce the number of 
branches in the program, the GPA-1 uses hyperblocks that in- 
clude predication and multiple exit points. Hardware support 
is provided to execute these hyperblocks, which contain pred- 
icated instructions and early block exits. 

Predication: There are several possible strategies for han- 
dling predication within the block-atomic execution model. 
The GPA-1 uses an execute-al l  approach, in which both predi- 
cate paths execute, but only one path delivers a result to the 
common instructions after the predicate. This approach is 
implemented by predicating only the leaf instructions in the 
DFG of the predicated region. This strategy reduces the num- 
ber of instructions to which the predicate must be delivered 
and permits execution of all but the leaf instructions of the 
DFG before the predicate is calculated, reducing the critical 
path. A special class of instructions called cmove (conditional 
move instructions) are used to implement predication. They 
accept one input operand and a boolean condition and create 
one output value. The crnove instructions are of two types: 
cmove_t and cmove_f. The cmove_t instruction forwards 
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a) Code schedule 

II) add r2, rT, r8 
I2) id rl, rS, 0x0f 
13) cn~o pl, Ri, #0 
I4) id r9, r8, 0xl01f (pl) 
I5) add r2, r2, r9 (pl) 
I6) add r3, r2, rl 
I7) becfz r3, 0xdeac 

b) Rescheduled code 

If) add t2, r7, r8 
I2) id rl, r8, 0x0f 
I3) cn~o pl, Ri, #0 
I4) id r9, r8, 0xl01f 
I5) add r2, U2, r9 (pl) 
Cl) cmove-f r2, t2, pl 
I6) add r3, r2, rl 
I7) beqz r3, 0~deac 

Figure 3: Code example for a Grid Processor 

c) Dataflow graph 

the input operand to the output if the condition is true, while 
the craove_f  forwards the input if the condition is false. If the 
boolean condition is not met, then no output is produced. 

Figure 3a shows a predicated sequence of code in which 
instructions I 4  and I 5  form a predicated region. I 6  uses 
register value r 2  which is defined by I 1 and conditionally re- 
defined by 15 depending on the predicate p 1. Figure 3b shows 
the rescheduled code with one crnove. . f  instruction ( c l )  in- 
serted, c2  is added to ensure that exactly one value for r 2 ,  
produced either by I 2 or 15,  reaches 16. The dataflow graph 
for the rescheduled code is shown in Figure 3c. The data de- 
pendences are shown in solid lines and the predicate values 
passed in dotted lines. Note that the predicate value p2  is now 
sent only to 15 from the original region, and not 14,  since 14 
produces a temporary that is created and destroyed in the pred- 
icated region (i.e., I 5  is the only leaf node in the predicated 
region). 

We discuss other alternatives to support predication in 
Section 5. The approach taken here is chosen for high 
performance--few instructions must wait for the predicate to 
be calculated. However, this approach results in a less effi- 
cient use of power; other approaches may be preferable in a 
power-constrained implementation. 

Ear ly  exits: A branch from the middle of a hyperblock 
is called an early exit. When a hyperblock contains an early 
exit branch, the GPA-1 must ensure that only the correct val- 
ues are ultimately written back to the register file and memory. 
Further, to maintain program correctness, branch instructions 
should be executed in serial order. The GPA-1 uses predication 
to enforce this sequentiality when natural data dependences do 
not. Every branch instruction is predicated on the complement 
of the condition for the immediately preceding branch in that 
hyperblock - -  this branch should be executed only if the pre- 
vious branch was not taken. 

Like predication, early exits introduce the potential for the 
same output register name to be produced at several points in 
a hyperblock. The GPA-1 should guarantee that exactly one 
value reaches the block termination control. Every such out- 
put instruction is predicated on the condition for the immedi- 
ately following branch - -  if the branch is taken, this output 
should be written out, otherwise it should be ignored. Extra 
predication is necessary only when the same register name is 
to be produced by multiple instructions in the block and not 
for every output instruction. 

Since the mapped blocks execute in dataflow order, in- 

structions generating output values may execute before a prior 
taken branch. These results must be filtered so that they do not 
modify the register file or memory. An index number assigned 
to each instruction, which indicates its position in static pro- 
gram order, is used to filter values at the block commit logic. 
When a branch executes, and sends its target to the global con- 
trol, all outputs generated by instructions later than the branch 
are discarded by the block commit logic. 

Block commit:  GPAs benefit from distributing execution 
state, but that same distribution makes decisions about global 
control more complicated. The hyperblock can be committed 
when all stores and output register values have been produced. 
In the presence of early exits and predication, detecting when 
all values have been produced requires additional logic at the 
block termination control. The GPA-1 employs a count of out- 
put values statically associated with each hyperbloek. When 
a store or register output fires, it send a signal to the commit 
logic that sums the signals to detect block completion. If an 
output is produced by an instruction whose predicate is false, 
a signal is still sent to the commit logic, but without an associ- 
ated value. This policy means that a block cannot be commit- 
ted until all instructions have fired, even those on false predi- 
cate paths or those after taken branches. We are investigating 
specialized networks and in-grid combining trees to ease that 
restriction. 

Block st i tching:  Thus far, we have described a GPA design 
in which fetch, map, and execute are serialized across differ- 
ent hyperbtocks. However, fetching, mapping, and execution 
can be overlapped to utilize the available frames and functional 
units in the grid more effectively. While one hyperblock is exe- 
cuting, the next block can be speculatively fetched and mapped 
using the address returned by a block level predictor. 

Concurrent execution of multiple hyperblocks is also fea- 
sible, similar to previously proposed speculative threads [24]. 
Register values passed between concurrently executing blocks 
are communicated through the in-grid network, bypassing the 
register file. Register inputs of speculatively mapped blocks 
that are not produced by a previously mapped block are deliv- 
ered to the consumers by executing the corresponding move  
instructions. We call this mechanism block stitching. 
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Block size 
Name Static Dynamic Inputs 
adpcm 51.1 30.7 6.5 26.7 
dct 187.9 172.1 14.7 199.8 
mpeg2 109.7 94.t 11.9 I 98.5 
gzip 66.2 37.1 11.6 I 29.8 
mcf 40.1 28.8 4.7 33.6 
parser 20.3 16.2 3.4 13.7 
ammp 82.5 72.3 6.6 67.8 
art 82.7 79.6 25.6 54.2 
equake 50.2 44.1 10.0 34.4 

Register usage 
Temp reads Temp writes Outputs 

22.4 5.7 
163.6 7.3 
84.4 7.4 
28.4 7.1 
25.7 2.3 
12.7 2.8 
58.1 3.8 
54.0 20.0 
32.7 9.5 

Table 1: Program characteristics 

Branch 
5.7 
1.7 
3.4 
4.4 
1.7 
1.8 
8.7 
5.3 
2.3 

exits Memory conflicts(%) 
0 
0 

1.6 
9.3 
0.9 
4.8 
0.6 

54.9 
11.9 

3.4 M e m o r y  access 

In the GPA- 1, the primary data cache resides on the right-hand 
side of its execution array. When a load executes at a node, 
it forwards its effective address and targets from the node to 
the data cache, which performs the memory access and sends 
the result of the load directly to the targets. Maintaining the 
correct ordering between loads and stores that do not have an 
explicit and visible data dependence between them is a well- 
known problem. We use traditional load-store queues to main- 
tain sequential memory semantics for loads and stores that ar- 
rive out of order. However, since the queues are on the criti- 
cal path to memory, they may slow accesses down in a wire- 
dominated design, even if no ordering violations are detected. 

4 Evaluation 

This section presents a study of pertinent program charac- 
teristics, followed by an evaluation of GPA-I performance 
across a set of nine applications. We chose three SPEC 
CPU2000 floating-point benchmarks (equake, ammp, and art), 
three SPEC CPU2000 integer benchmarks (parser, gzip, and 
mcf), and three Mediabench benchmarks (adpcm, dct, and 
mpeg2enc) [14] for our analysis. All benchmarks were com- 
piled with the Trimaran tool set [26] to generate the neces- 
sary hyperblocks. The SPEC benchmarks were compiled with 
the train input set and run using with refinput set, while Me- 
diabench applications were compiled and run using the same 
input set. All compilations were performed with full optimiza- 
tions (-04). 

To characterize the applications, the Trimaran simulator- 
which performs functional execution of the Trimaran- 
generated code-was modified to track block size profiles and 
register usage. We collected dynamic statistics for first 1 bil- 
lion instructions executed in each benchmark. 

We used a custom instruction scheduler that accepts the 
Trimaran-generated hyperblocks as inputs, inserts overhead 
instructions, and schedules the blocks onto the GPA-1. The 
scheduler assigns instructions to nodes in the grid using a 
greedy critical path scheduling strategy. This strategy sched- 
ules one instruction per node, with the longest path in the DFG 
on the shortest possible physical path in the grid. Further, for 
best proximity to the caches, load instructions are placed as 
far to the right of the grid as possible. Finally, we assume full 
floating-point and integer units at each node, so each node in 

the GPA-1 can execute any instruction. 
We estimated performance using a custom event-driven 

timing simulator. We modified the functional front-end of the 
Trimaran simulator to generate an execution trace of a hyper- 
block, which is used by our timing back-end to simulate ex- 
ecution on the GPA-1. The simulator accounts for dynamic 
behavior including routing latencies, contention for the wires 
in the grid and at the input and output ports of each node, a 
memory hierarchy with two levels of data caches and main 
memory, and next-hyperblock prediction. We fast-forwarded 
through the first 500 million instructions of each application, 
and then simulate the following 200 million instructions to ob- 
tain timing results. 

4.1 Applicat ion Characteristics 

In Table 1, we display the characteristics of the benchmarks 
compiled with the Trimaran compiler. The average number 
of instructions per hyperblock statically produced by the com- 
piler is shown in column 1 and the average number of instruc- 
tions dynamically executed per hyperblock is shown in column 
2. These sizes correspond to only the useful instructions in 
a hyperblock; overhead instructions (move,  s p l i t ,  a n d  
cmove)  are not included for the static sizes and further, in- 
structions that receive false predicates and those beyond a 
taken early exit are not included in the dynamic sizes. Unsur- 
prisingly, the integer SPEC CPU2000 benchmarks show the 
smallest dynamic hyperblock sizes, ranging from 16 to 37 in- 
structions on average. 

The next four columns show the number of register inputs 
to each hyperblock, the number of temporary reads and writes, 
and the output values. The temporary reads and writes are 
values produced, forwarded and consumed within the grid and 
require no register file accesses. A significant reduction (30% 
to 90%) in register file bandwidth is achieved. Some of that 
reduction may be lost, however, if large hyperblocks are split 
to fit onto a GPA of finite size. 

The branch exits column shows the average number of 
branches per hyperblock. Larger numbers of potential early 
exits will require complicated control to pass the correct regis- 
ter values to the register file, and to subsequent blocks if group 
stitching is supported. 

Finally, the nghtmost column shows the fraction of hyper- 
blocks that contain a store with a later load to the same address. 
The number is significant (greater than 5%) for three bench- 

45 



'°1 0.8 

o 0.6 

0.4 

m o v e  

I m  spl i t  
cmove 

0.2 

0.0 

- ° 

t ,o  

Figure 4: Overhead of Block-Atomic Execution 

101 [1 •  pA, 0.SA U-ALU 8 ~ U 8-way,512-RUU [~ 

~ 6  

4 

2 

0 
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marks, indicating that even with greatly reduced register spills 
due to the large number of compiler-visi:ble, intra-hyperblock 
temporaries, some mechanism to reduce the penalty or fre- 
quency of load-store conflicts, such as dependence specula- 
tion, will likely be needed. 

Figure 4 shows the fraction of overhead instructions 
(move, s p l i  t ,  and cmove)  required by the block-atomic ex- 
ecution model, s p l i t  instructions are added when an instruc- 
tion requires more than three targets. The average across the 
benchmarks is approximately 35% of all instructions. How- 
ever, only the split and cmove instructions add execution 
overhead by consuming instruction slots on a grid; the move  
instructions are kept in a separate instruction cache bank, and 
do not consume execution resources, nor do they reside in be- 
tween dependences on the critical path. Discounting the move  
instructions, which only affect program binary size and lower- 
level cache miss rates, the remaining overhead instructions 
consume less than 20% of the instructions scheduled on the 
grid. 

4.2 Per formance  evaluat ion 

The baseline GPA-1 configuration is an 8x8 grid with 32 
frames. Each node is connected to three of its neighbors in 
the next row. Express channels, which are higher-level metal 
channels route operands from the bottom to the top of the grid, 
at double the velocity of the short node-to-node wires. In this 
simulated implementation, integer add and logical instructions 
require a single cycle to execute. Other instruction latencies 
are configured to be similar to that of the Alpha 21264. We as- 
sume that long latency operations such as floating-point adds 
and multiplies can be fully pipelined. 

We evaluate performance on GPA-1 configurations with 
both perfect and realistic assumptions for memory and next 
hyperblock-prediction. When modeling a realistic memory 
system, we simulate a memory hierarchy with 64KB, 2-way 
L1 data caches with 3-cycle access, and a 1MB, 4-way, 13- 
cycle L2 cache, a 62-cycle physical memory latency. When 
modeling realistic branch prediction, we simulate a 2-level 
global branch predictor with a 14-bit history, a 16K entry pat- 
tern history table, and a 512-entry, 2-way branch target buffer. 
We assumed a perfect instruction cache for all experiments. 

Our GPA simulator does not model wrong-path execution. 
When a misprediction occurs, we account for the delay by 

stalling the mapping of the subsequent hyperblock until its 
target is known, permitting correct control flow to resume. 
We also assume ideal behavior for store-load pairs with the 
same address: those loads are stalled until the store completes, 
whereas independent loads are allowed to issue when ready. 
This assumption is less optimistic than it would be in a con- 
ventional system, as discussed in Section 5. 

The major features that influence performance in the GPA- 
1 are the organization of the ALUs (the number of ALUs and 
their layout), the interconnect network latency, and the num- 
ber of I/O ports at each node. Our default GPA-1 configura- 
tion assumes an 8x8 grid of ALUs with two I/O ports at each 
node. The interconnect network is configured such that the 
three nodes directly below any given node can be reached in a 
single hop. Two components constitute the routing delays of 
passing an operand from a producer to its consumer: wire de- 
lay, which depends on the physical distance in nodes between 
a producer and consumer, and the router delay at every node in 
the path. The default GPA-1 parameters assume that the wire 
and router each consume a quarter cycle, totaling half a cycle 
per hop of routing delay. 

Comparison with alternate architectures: Figure 5 
shows a direct performance comparison of the 8x8 GPA-1 to 
an idealized 8-way issue superscalar processor. The left bar in 
each benchmark cluster shows the performance of the GPA-1, 
while the right bar shows the same for the superscalar proces- 
sor. The white portions of each bar represent the IPC assuming 
perfect memory and perfect branch (or next-hyperblock) pre- 
diction. The colored portions show the IPC assuming realistic 
memory and realistic branch prediction. 

The supersealar processor was simulated with the Sim- 
pleScalar tools [4], for which we assumed a 512-entry RUU 
(instruction window and reorder buffer). Furthermore, we as- 
sumed that the clock rates of both the machines were the same, 
despite the difficulty of building an 8-wide, large window su- 
persealar core, with full bypassing, that could be clocked at the 
same frequency as the distributed-window GPA-1. We also 
simulated each benchmark on Trimaran's VLIW processor 
simulator assuming 8-way issue, perfect memory, and static 
branch prediction. In Figure 5, the third bar in the last cluster 
shows the mean performance of this VLIW machine. Despite 
the assumption of perfect memory, the simulated VLIW pro- 
cessor performs worse on average than the superscalar proces- 
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Nallle 
adpcm 
dct 
mpeg2 
gzip 
mcf 
parser 
ammp 
art 
equake 

Perfect Mem + BP Realistic Mem + BP 
IPC Stitching 

No stitch Speedup 
1.4 1.4 
4.0 2.5 
3.0 1.8 
1.9 2.2 
1.0 1.5 
1.0 2.4 
2.3 1.8 
2.5 1.9 
2.5 3.4 

IPC Stitching 
No stitch Speedup 

1.1 1.2 
3.7 2.2 
2.7 1.4 
1.4 1.7 
0.6 1.9 
0.8 1.7 
0.2 3.1 
1.5 2.2 
2.0 I 2.2 

Table 2: Speedup achieved by stitching 

sor with realistic memory. 
The results show promise for the GPA-1. In four of nine 

benchmarks with perfect memory and branch prediction, and 
for five of nine benchmarks with the more realistic mode|s-  
the GPA-1 demonstrates superior performance to the idealized, 
large-window superscalar engine, which in turn showed higher 
performance, in every case, than the VLIW core. The disparity 
is higher for perfect memory and prediction, indicating that the 
GPA-1 has higher performance potential, but that further im- 
provements in the memory system and branch predictor are 
more important for GPAs than for conventional superscalar 
cores. The code for which the GPA-I performs best is dct, 
showing 10.2 IPC for perfect memory/prediction and 8.5 for 
the realistic assumptions. This architecture is able to harvest 
substantial ILP when it exists. Of the benchmarks on which 
the GPA-1 performs substantially worse than the superscalar 
processor, three of them (adpcm, mcf, and parser) are due to 
disparities in the compilers: the Cornpaq C compiler (V6.3- 
025) with full optimization versus the lower-performing Tri- 
maran compiler. Individual analysis of these three benchmarks 
showed that, the superscalar core with perfect memory and 
predictors achieves higher IPC than there is available ILP in 
the Trimaran-generated code, assuming an ideal machine with 
infinite resources. Extensions to our compiler infrastructure to 
handle small inner loops with loop-carried dependences will 
improve the performance of those benchmarks on the GPA-1. 

B l o c k  stitching: Concurrent block execution on the GPA- 1 
efficiently utilizes available frames and functional units, and 
benefits from block stitching. Table 2 shows the speedup ob- 
tained due to stitching. The second and third columns corre- 
spond to the baseline GPA configuration with perfect mem- 
ory and prediction assumptions and the last two columns cor- 
respond to the GPA configuration with realistic assumptions. 
The second and fourth columns show the IPC achieved on a 
GPA without stitching. Columns 5 and 6 show corresponding 
speedups with stitching. Block stitching provides roughly a 
factor of two speedup for both perfect and realistic assump- 
tions. These results indicate that the ability to map multiple 
blocks, even speculatively, to a GPA is critical for competitive 
performance of sequential threads. 

Average hops per data value 
Name Input 
adpcm 2.8 
dct 2.9 
mpeg2 3.3 
gzip 3.0 
mcf 2.1 
parser 2.6 
ammp 2.4 
art 3.8 
e.quake 3.8 

Temporary Memory 
1.8 1.9 
2.4 3.7 
1.5 3.8 
2.1 2.7 
2.8 1.9 
1.8 1.8 
1.7 4.9 
1.7 3.2 
2.0 2.8 

Table 3: Average hops for different types of data operands 
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Figure 6: Sensitivity to wire delays 

Routing delay: Our results show that the routing delay 
from an operand's producer to its consumer is the single largest 
determinant of the aggregate GPA-1 performance. The por- 
tions of operand routing delay that we measure or vary in this 
section are the three most significant components of that total 
delay: 1) the number of hops traversed, 2) the inter-node wire 
delay, and 3) the router delay at each hop. 

Table 3 shows the average number of hops needed to route  
data in the grid for the GPA-1. Because the number of in- 
put register values is non-negligible, input operands are typi- 
cally routed between two and three hops in the network. The 
scheduler is effective at reducing the number of hops needed 
for temporaries, which require roughly two hops on average. 
The number of hops to and from memory varies more than the 
routing of operands, and represents one of the performance 
bottlenecks that more sophisticated schedulers must avoid. 

The inter-node wire and router delay is critical for perfor- 
mance. We simulate GPA-1 configurations for router delays of 
0, 0.125, and 0.25 cycles with wire delays varying from 0 to 
0.75 cycles. Figure 6 shows the effects on mean IPC (across 
our nine benchmarks) as the inter-node wire delays are var- 
ied, assuming perfect memory and prediction. For example, 
the bottom curve corresponds to a fixed router delay of 0.25 
cycles. The GPA-1 configuration with zero wire and router 
delays models back-to-back execution in consecutive cycles, 
with performance being limited only by the availability of 
functional resources and instruction buffers. The horizontal 
lines show the mean IPC of the VLIW and superscalar cores 
with perfect memory/predictor assumptions. The circled dot 
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G P A -  1 Contention Connectivity 
Name (PC 5/5 I/O Zero C5 C6 C 10 
adpem 2.2 2.2 2.4 2.2 2.4 2.5 
dot 10.2 10.0 19.8 10.4 11.0 11.9 
mpeg2 5.7 5.8 6.9 5.8 6.7 6.4 
gzip 4.2 4.2 4.8 4.2 4.3 4.5 
mcf 1.6 1.6 1.7 1.6 1.8 1.7 
parser 2.5 2.5 2.6 2.4 2.3 2.5 
ammp 4.2 4.3 4.6 5.2 4.6 5.9 
art 5.0 4.8 5.4 4.7 5.0 4.9 
equake 8.8 8.9 11.5 8.3 9.0 , 9.6 

Table 4: Sensitivity analysis for diifferent features 

shows the GPA-1 configuration that was used for the perfor- 
mance results, shown in Figure 5, As the wire delay of the 
GPA-1 shrinks to zero from 0.5 cycles, close to a factor of two 
improvement in mean IPC is achieved, from just under five to 
over nine. When both the router delay and the wire delays are 
set to zero, the mean IPC is almost 11. 

The router operation at the first hop is assumed to be in 
parallel with instruction execution. As shown in Table 3, the 
average number of hops per communication is 2. This corre- 
sponds to one router and two wires being traversed resulting 
in an effective communication delay of 0.75 for the baseline 
GPA. Thus for any GPA configuration, the wire delay affects 
performance more than the router delay. The wire and router 
delays are analogous to both operand bypass delays in a con- 
ventional superscalar microarchitecture, and inter-cluster de- 
lays in a partitioned superscalar or VLIW processor. Our base- 
line parameters assume a quarter cycle delay each for both the 
wire and router. Conversely, we assume that in the superscalar 
processor, dependent operations can issue in back-to-back cy- 
cles. It is possible, however, that the point-to-point communi- 
cation in a GPA can be faster than operand bypassing in future 
superscalar processors. That analysis is beyond the scope of 
this paper. 

Connect ivi ty:  Table 4 presents the effect of connectivity 
and contention for I/O ports on IPC. All the results presented 
in the table assume a 8x8 grid with perfect memory and perfect 
prediction. The second column shows the IPC for the baseline 
GPA-1 configuration. The third corresponds to the GPA-1 with 
5 input and 5 output ports at each node. The fourth column cor- 
responds to the GPA-1 with zero contention for the I/O ports 
and wires in the grid. Infinite inter-node communication paths 
improves performance minimally, indicating that contention 
plays a minor role. To examine the effect of the richness of 
the interconnect in the grid, we varied the number of nodes (5, 
6, and 10) to which each node is connected. These results are 
shown in the columns C5, C6, and CI0  respectively. C5 and 
C10 correspond to a node being connected to 5 of its neigh- 
bors in the next row and next two rows, respectively, whereas 
C6 corresponds to a node connected to three of its neighbors 
in the next two rows. The average performance speedup when 
simulating 10 point-to-point paths per node instead of 3 was 
1.1. However, higher connectivity could increase delays in the 
network due to router complexity and number of wires. 
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Figure 7: Sensitivity to grid height 
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Figure 8: GPA effectiveness 

Gr id  d imension:  Figure 7 shows the sensitivity of perfor- 
mance to grid height. Performance increases linearly up to 8 
rows, beyond which the performance improvement tapers off. 
Some benchmarks perform best with 8 rows. The loss in per- 
formance when more rows are added is due to the longer rout- 
ing delays to reach the bottom of the grid - -  either to reach 
the termination control or to pass through an express channel. 
Programs with large available ILP and large block sizes benefit 
from increase in the number of rows. Among the benchmarks 
we studied, dct ,  rnpeg2,  a m m p ,  and a r t  fail into this category. 

GPA Effectiveness: Figure 8 shows the fraction of achiev- 
able ILP that the GPA-1 exploits in each benchmark, both for 
perfect memory/prediction and realistic assumptions. Each bar 
is normalized by dividing the GPA-1 performance by the IPC 
observed on an ideal machine. The ideal machine is mod- 
eled by simply traversing the program dataflow graph, and di- 
viding the number of instructions by the critical path length. 
That ideal IPC value for each benchmark resides atop its cor- 
responding bar. The middle bar corresponds to the GPA-1 
configuration assuming both perfect memory and prediction 
(PMP), while the bottom bar corresponds to the configuration 
with realistic assumptions for memory and prediction. We see 
that the GPA-1 exploits between 10% and 40% of the available 
ILP in each benchmark. 

While these results are promising, they represent only an 
unoptimized, first-cut GPA design. The performance benefits 
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are likely to diminish as we add detail to our simulator, but are 
also equally likely to improve as we enhance the scheduler and 
tune the performance of the architecture. In the next section, 
we describe some of the possible extensions and alternatives 
to the GPA-1 that could further improve performance. 

5 Des ign  Alternat ives  

Because the design space for GPAs is large, there are many un- 
knowns about performance/complexity trade-offs for the new 
aspects of this system. In this section, we describe unexplored 
opportunities for performance tuning in the grid network, the 
block control logic, and the memory system. We then describe 
more radical extensions to the block-atomic execution model 
that may eventually provide higher performance or flexibility 
in the architecture. 

5.1 Performance tuning 

Grid network design: One of the key determinants of GPA 
performance is the logic and wire delay between producers and 
consumers on the critical path. With clock rates close to the 
speed of the grid ALUs, the latency in the routers and wires 
in the network must be kept as short as possible. The latency 
to communicate ALU results from producer to consumer will 
depend heavily on the distance and the number of hops in the 
grid network. Larger degree routers will reduce the number of 
hops, but increase the delay per hop. Achieving the right bal- 
ance between near and far communication between producers 
and consumers is critical for high performance. While this 
trade-off is similar to those found in multiprocessor intercon- 
nection networks, the fine granularity of the operand network 
magnifies the effect. Furthermore, since the routers may not 
necessarily have dedicated channels and ports, efficient flow 
control of the operand packets will be critical for obtaining 
high performance. To reduce the handshaking overhead re- 
quired by many flow control protocols, we are currently ex- 
amining techniques for pre-reserving network channels to a 
consumer node while the producer ALU is executing its in- 
struction. Such techniques are similar to Flit-Reservation Flow 
Control, which has been proposed for coarser-grained on-chip 
networks [18]. We are also examining how express channels 
can reduce the communication latency, by trimming the num- 
ber of hops between distant producer and consumer ALUs [8], 
as well as circuit techniques to minimize delays in the touters. 

Predication strategies: Since the GPAs run with a data- 
driven execution model, predication is difficult to implement. 
The problems with predication are a) communication of pred- 
icate bits to instructions in predicated regions and b) added 
complexity of block termination control to handle instructions 
that receive false predicates. The simplest of the strategies is 
to send predicate bits to all instructions in the predicated re- 
gion. This strategy avoids superfluous execution but requires 
high bandwidth for predicates. Alternately, predicates may be 
sent only to the root instructions in the data dependence sub- 
graph controlled by the predicate, reducing predicate fan-out. 
Both of these approaches limit performance as all instructions 
in the predicated region need to wait until the predicate bit is 

received [3]. In our current solution, the compiler predicates 
only those instructions that update stable storage (stores and 
register file writes). That strategy provides a critical path re- 
duction, since the predicate computation is not needed until 
later, plus a lower fanout of the predicate values is needed, at 
the expense of less efficient use of power. 

Memory system: Efficient delivery of instructions into an 
ALU grid relies upon placing the instructions in the corre- 
sponding instruction cache bank to avoid routing delays. Since 
the schedule may have holes due to unused ALU slots, an un- 
compressed version is likely to be large. While not discussed 
above, we anticipate maintaining the program code in a com- 
pressed format in the memory hierarchy below the L1 instruc- 
tion cache to conserve both capacity and bandwidth. In the 
data memory, the first-order challenge is to maintain proper 
ordering of load and store instructions to the same memory lo- 
cations. Our existing design requires a structure similar to a 
load/store queue with store-load forwarding. We are exploring 
both speculative and conservative strategies to detect ordering 
violations and enforce ordering among subsets of the load and 
store instructions. We are also exploring a scheme in which 
previously communicating store-load pairs speculatively com- 
municate via point-to-point messages, bypassing the memory 
system. 

5.2 Execution model extensions 

Grid speculation: In addition to the speculative block map- 
ping and execution described in Section 3, a GPA can poten- 
tially support speculation and inexpensive recovery within a 
single hyperblock. For example, if the dependence between a 
load and a store is unknown, a GPA may issue the load specu- 
latively, fetch the data from memory, and pass it to the instruc- 
tions that will consume the value. If the load is later deter- 
mined to have needed the result from a prior store, the entire 
hyperblock need not be nullified. Instead, the grid may be able 
to employ selective re-execution by injecting the new load re- 
sult into the grid where it is routed to the instructions that are 
still mapped onto the ALUs. The new values trigger only those 
instructions along the dependence path from the load to the end 
of the block for re-execution. This capability will greatly re- 
duce the overheads associated with rollback from a data value 
misprediction. 

Frame management: Multiple frames essentially provide 
multiple logical processors on the same grid substrate. Manag- 
ing these frames is key to the execution model implemented by 
a GPA. As described above, these frames can be used for spec- 
ulative mapping and execution of hyperblocks in a sequential 
program. For applications that consist of independent threads 
of control, the frames can support a multithreaded execution 
model. A subset of frames may be allocated to each thread 
and then used in a manner chosen by each thread: sequential 
with speculative mapping or data parallel with mapping reuse, 
as described below. It is also possible that different threads 
could share the same frame, with each thread using a physi- 
cally different subset of the ALUs, but the complexity for this 
level of sharing appears prohibitively complex. 
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ALU control: While Section 3 describes each ALU as hav- 
ing only a single instruction per frame with only data trig- 
gered control, we are examining extensions that provides a 
small amount of additional local control :at each ALU site. The 
extensions include increasing the amount of local instruction 
and data storage, and treating the ALUs as simple microcon- 
trollers. M a p p i n g  r euse  is possible in the grid by delivering 
inner kernels to each ALU which could then self-sequence 
through the instruction blocks with limited intervention from 
any global grid controller. The potential exists for mapping a 
repeated hyperblock to a grid once, and then dynamically re- 
instantiating the block locally, with no refetching, for multiple 
iterations. Different iterations can thus be executed in different 
frames. 

6 Related Work 

The goals of high clock rate and high IPC are not unique to 
GPAs. Many prior approaches have attempted to use both 
static and dynamic techniques to discover and execute along 
the critical path of a program, but they are too numerous to 
discuss here. In this section we describe what we believe to be 
the most relevant related work. 

Dennis and Misunas proposed a static dataflow architec- 
ture [9], and Arvind proposed a Tagged-Token Dataflow archi- 
tecture with purely data-driven instruction scheduling for pro- 
grams expressed in a dataflow language [2]. Culler later pro- 
posed a hybrid dataflow execution model where programs are 
partitioned into code blocks made up of instruction sequences, 
called threads, with dataflow execution between threads [7]. 
Our approach differs from these in that we use a conventional 
programming interface with dataflow execution for a limited 
window of instructions, and rely on compiler instruction map- 
ping to reduce the complexity of the token matching. 

In a sense, GPAs are a hybrid approach between 
VLIW [10] and conventional superscalar architectures. A GPA 
statically schedules the instructions using a compiler, but then 
dynamically issues them based on data dependences. Other ef- 
forts have attempted to enhance VLIW architectures with dy- 
namic execution. Ran proposed a split-issue mechanism to 
separate register read and execute from writeback and a de- 
lay buffer to support dynamic scheduling for VLIW proces- 
sors [20]. Grid Processors share many characteristics with 
the Transport Triggered Architectures proposed by Corporaal 
and Mulder, including data driven execution, reducing regis- 
ter file traffic, and non-broadcasting bypass of execution unit 
results [6, 5]. 

Others have looked at various naming mechanisms for 
values to reduce the register pressure and register file size. 
Smelyanskiy et  al. proposed Register Queues for allocating 
live values in software pipelined loops [23]. Llosa proposed 
register sacks, which are low bandwidth port-limited register 
files for allocating live values in pipelined loops [15]. Part 
proposed a Block-Structured Instruction Set Architecture for 
increasing the fetch rate for wide issue machines where the 
atomic unit of execution is a block and not an instruction [11]. 

Many researchers are exploring distributed or partitioned 
uniprocessor designs. Waingold et  aL proposed a distributed 
execution model with extensive compiler support in the RAW 

architecture [29]. The RAW architecture assumes a coarser- 
grain execution than does the Grid Processor, exploiting paral- 
lelism across multiple compiler-generated instruction streams. 
Ranganathan and Franklin described an empirical study of de- 
centralized ILP execution models [19]. Sohi et  al. proposed 
Multiscalar processors, in which a single program is broken up 
into a collections of speculative tasks [24]. 

A different approach to creating a distributed window used 
dynamic traces for the execution partitions [28]. In that work, 
Vajapeyam and Mitra proposed renaming temporary registers 
within a trace to reduce the needed global register file and re- 
name bandwidth; GPAs use a similar approach, except that the 
renaming is performed statically. Unlike that design, however, 
the GPA-1 executes hyperblocks in a fine-grain dataflow fash- 
ion and overlaps speculative tasks/hyperblocks on the same 
computation substrate. 

Finally, Uht e t  al.  are currently investigating an architec- 
ture [27] that is also intended to exploit high ILP with many 
ALUs in a single execution core, but using different commu- 
nication mechanisms than Grid Processor Architectures. 

7 Conclusion 

This paper has introduced Grid Processor Architectures as a 
new class of microarchitectures, that are intended to enable 
continued scaling of both clock rate and instruction through- 
put. By mapping dependence chains onto an array of ALUs, 
conventional large structures such as register files and instruc- 
tion windows can be distributed throughout the ALU array, 
permitting better scalability of the processing core. By deliv- 
ering ALU results point-to-point instead of broadcasting them, 
GPAs mitigate the growing global wire and delay overheads 
of conventional bypass architectures. Our initial studies on 
sequential applications are promising, with the grid processor 
achieving IPCs ranging from 1 to 9, competitive with those of 
idealized superscalar mieroarchitectures, and exceeding those 
of VLIW microarchitectures. 

It it not clear that GPAs will be superior to the conventional 
alternatives, which may find more incremental, but equally 
good solutions to the wire delay and clock scaling problems. 
GPAs have several disadvantages; they force the data caches 
to be far away from many of the ALUs, and incur delays 
between dependent operations due to the network router and 
wires, which can be significant. The complexity of frame man- 
agement and block stitching (allowing successor hyperblocks 
to execute speculatively) is significant and may interfere with 
our goal of fast clock rates. 

However, future architectures must be partitioned some- 
how, and the partitioning and the flow of operations are likely 
be exposed to the compiler, while still preserving dynamic exe- 
cution. Many of the techniques discussed herein are thus likely 
to appear in future designs. We are actively working to refine 
the microarchitecture of the GPA-1 and the hyperblock sched- 
uler with the anticipation that the hardware complexity can be 
further reduced without undue burden on the software. Future 
work will also include an exploration of different grid exe- 
cution models for mapping streaming/media, scientific/vector, 
and multithreaded codes. 
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