
Exploring Configurations of Functional Units in an Out-of-Order

Superscalar Processor

St6phan Jourdan, Pascal Sainrat, and Daniel Litaize

Institutde Recherche en Informatique de Toulouse
University Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, FRANCE

{]ourdan, sainrat, li.taize}@irit. fr

http: //www. i-rit. f r/ACTIVITES/EQ_APARA/

Abstract

This study has been carried out in order to determine cost-effec-
tive conjiguratiom of functional units for multiple-issue out-of-
order superscalar processors. The trace-driven simulations were

pe@ormed on the six integer and the fourteen floating-point pro-
grams from the SPEC 92 suite. We first evaluate the number of

instructions allowed to be concurrently processed by the execution

stages of the pipeline. We then opply some restrictions on the exe-

cution issue of different instruction classes in order to define these
configurations. We conclude that jive to nitw functional units are

necessary to exploit Instruction-Level Parallelism. An important

point is that several data cache ports are required in a processor
of degree 4 or more. Finally, we report on complementary results

on the utilization rate of the functional units.

Keywords: Instruction-level parallelism, Superscalar micropro-

cessor, Out-of-Order Execution, and Functional Units.

Integer unit

shift unit

Divide unit

Multiply unit u
1

Table 1 — Configuration of Functional Units
‘ Oividerx are merged irr dre same functional unit
‘ Multipliers am merged m the same functional unit
‘ Both units handte integer instruainrrs but only one prccesses shifts white the other
processes divides and mukiplk

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
ISCA ’95, Santa Margherita Ligure Italy
C) 1995 ACM 0-89791 -698-0/95/0006 ...$3.50

1. Introduction

Nowadays, the superscalar approach is unanimously recog-

nized, but there are many trends and ways of implementing such
architectures. For instance, a branch-history table end a branch-

target bu.er can be considered in order to improve the fetch effec-

tiveness through branch prediction [YePa92], as well as reserva-
tion stations to implement out-of-order execution issue [Toma67].

Nevertheless, the performance implied by such features mainly

relies on the computing capacities of the model of execution. Ex-

cept for Mike Johnson’s book [John 91], few studies have been
carried out to determine the most cost-effective cortllgurations of

functional units, especially on out-of-order superscalsr processors.

Different choices have been made by manufacturers as shown in
table 1 [IbMo94] [Moto91] [Sun95] [Dsc95] [Mips94]. Note that

among the five processors from table 1, the PowerPC 604 and the

R1OOOOme out-of-order superscalar processors.

Throughout the paper, we study different ccmflgurations of
functional units according to the degree of the processor. The
lookxzhead window refers to all the instructions simultaneously

held in the execution pipelines. Its size is defined in harmony with
the degree.

This study was performed assuming an ideal instruction-fetch

mechanism, no cache miss snd a unified instruction-issue buffer.

These assumptions were made in order to defiie tlhe most cost-ef-

fective contlgurations of functional units while considering only

data dependencies, and they are dealt with in section 2 as well as

the model of execution and the simulation process. Results pre-

sented in this paper exe for all the programs frolm the SPEC 92

suite. Section 3 describes these benchmarks. We then determine in
section 4 the size of the lookshead window for a degree varying
from 2 to 8. Section 5 reports on results of our s irnulations for a
wide variety of integer and load/store unit configurations.

Floating-point units are dealt with in section 6. !Section 7 offers
some complementary results on the utilization rate of the func-

tional units. Conclusions are then summarized in section 8.

2. Model of Execution

The modeled architecture implements an out-of-order execu-

tion-issue policy and speculative execution in order to best exploit
instruction-level parallelism (ILP).

In such an architecture, after their fetching anc~their decoding,
instructions are dispatched from the instruction-dispatch bujj$er to
the insfrudicw-issue bufler. The upper bound of the number of in-

structions dispatched each cycle is called the degree of the proces-

117

ser. Instructions waiting for their operands do not stall the decod-

ing: the missing operands will be forwarded to the instruction-

issue buffer. The entries of the instruction-issue buffer are similar
to the entries of the reservation stations of the IBM 360/91

[Toma67] except that they can be linked to more than one fttnc-
tional unit An entry of the instruction-issue buffer holds the op-
eration as well as the source operands when available, or tags to

retrieve them otherwise. Entries holding all the values of their

source operands, may be issued except when a conflict occurs:
pipeliruxl units begin the execution of only one instruction at each
cycle. When an execution completes, the result is forwarded to the

entries of the instruction-issue buffer which require it, if any.

Issuing techniques ime the algorithms which arbitrate fiieable
entries of the instruction-issue buffer. This buffer can be unified

(all en~ies are linked to all functional units), split (all entries are

linked to only one functional unit), or mixed. A similar mecha-
nism is called the node table by Butler and Patt in [BuPa92]. In

their paper, they show that most issuing techniques give ahnost

the same performance for a processor featuring a wide degree.. We
therefore decided to implement the most natural algorithm named

oldest jirst where the entry which holds the oldest dispatched in-
struction has priority over the others.

To manage interrupts precisely, an entry associated to each
dispatched instruction is enqueued in a reorder buffer. However,
operand values or tags are always obtained during the decoding
[SmP185]. The reorder buffer maintains the initial program order,
and its size defiies the upper bound of the number of instructions
which can be simultaneously processed after their dispatch. As
mentioned below, this upper bound is the size of the lookahead
window. When an instruction is executed, the result is also for-
warded to the associated entry of the reorder buffer since it does
not duectly update the register file. The update will occur when no
previously dispatched instruction can still generate interrupts. In-
structions which may generate interrupts, are conditional
branches, divides, and memory accesses.In the latter instruction
class, subsequent instructions cannot update the file until the end
of the address processing only. Once the register file is updated,
the instruction is retired or completed: the entry is dequeued.

Each cycle, multiple out-of-order retirements can be made.

To sum up, the different states followed by an instruction are

fetched, decoded, dispatched, issued, executed and retired.

As we want to point out in this study the most cost-effective
cordlgurations of functional units to exploit instruction-level par-
allelism disregarding any other parameters which can lead to per-

formance degradation, we assume

● an ideal instruction-fetch mechanism : no instruction-cache
miss, no branch rnisprediction and a dispatch only limited by
the degree of the processor and the fullness of the reorder

buffer,

M no data-cache miss,

● a unified instruction-issue buffer, in order to have an ideal is-
sue scheme. Moreover the choice of another issuing tectilque
(which gives roughly the same performance as oldest firsl)
may not modify our result.

Table 1 shows that superscalar processors implement several
functional units, each capable of servicing different instruction
classes. We defiie these classes according to their tltnctionality as
follows:

● integer: arithmetic and logic operations,

● shft: shifts and bit-field manipulations,

● integer multiply,

● integer divide,

.

.

.
●

✎

loadlstore: memory loads and stores

jloating-point arithmetic,

jloating-point convert,

jloating-point mdtiply,

jloating-point divide.

We used the pixie profiler [Smit91] in order to produce irts@uc-
tion traces horn a real processing of the SPEC benchmarks. From

all the data reported by this software, we picked out only the op-
code and the memory address (in the case of a memory access) for
each instruction. These traces are read by our simulator which per-

forms a cycle-by-cycle simulation and gathers the mean number of

instructions retired per cycle (IPC). As previously outlined, the
simulator models an ideal instruction-fetch mecharrism. Thus, it

only takes into account the degree of the processor, the size of the

lookahead window, the memory and register data dependencies,
and the cm-figuration of functional units we want to evaluate.

Load/store instruction can bypass a store if, and only if, both

addresses are known (the value to be stored is forwarded to the

load when addresses match). Furthermore, the memory access of
stores starts only when all previous instructions cannot produce

interrupts anymore, in order to preserve memory coherency.

Latencies of the instruction classes which are listed in table 2,

are those of the PowerPC 604. All functional units but divide
units, are fully pipelined and mutually independent.

Finally, we wrote another simulator modeling an in-order issue

scalar processor, that only keeps track of register and memory data

dependencies. The basic assumption is that the current instruction
can be executed whatever the processor state is, except of course

when its operands me not yet proccsstxi. Performance results from
this simulator are the best we can expect from an in-order issue
RISC scalar processor without any branch-prediction scheme. In

this paper, speedups are related to this scalar processor.

Instruction class Latency IrWruction class Latency

integer 1 fi arithmetic 3

shift 1 fi convert 1

integer multiply 3 @ mtdtiply 3

integer divide 20 & divide 18s/31d

loadlstore 2/3
s X8Q&for single prenricu d d for double
W.

Table 2 —Latencies

3. Benchmarks

3.1 Instruction Traces

The results presented in this paper are for programs from the

SPEC92 suite [Spec92]. Two subsets are defined: CINT92

(integer) and CFP92 (fi’eating-point). In order to make our evalua-
tions, we use all programs from both sets (the 6 CINT92 and the

14 CFP92 programs). They were compiled on a R4600-based SGI
workstation using the standard makefdes provided with the suite
(with all optimization turned on).As previously mentioned,
pixie has been used to generate instruction traces (all NOPS be-
ing removed). Except for backprop, dnasa7, wave.5, and @ce2g6,
all the programs have been run to completion the smallest input
files or slightly modified versions have been used. In all, about

600 million instructions have been captured. Because of initird-
izations which do not concern floating-point da~ we did not trace

the first 200 million instructions of spice2g6 but the next 50 mil-

lions. Table 3 gives the mean distributions.

118

CINT 92 CFP 92

branch 21.2 % 83 %

jump 2.5 % 1%

condkional branch 18.7 % 7.3 %

memory access 37 Yo 41.7 %

load 25% 31.5 %
store 12 v. 10.2 %

integer 41.8 % 23.8 %
arithmetic and logic 37% 21.3 %

arithmetic 26.7 Vo 19.5 %
logic 10.3 !%0 1.8 V.

shift 4.6 % 2.3 %
multiply 0.1 % 0.1 %
divide 0.1 % 0.03 %

floating-point o% 26.2 %

arithmetic o% 10.9 v.

convert o% 5.4 %

multiply o% 9%

divide o% 0.9 %

Table 3 — Mean Distribution

3.2 Arithmetic and Harmonic Mean

The arithmetic mean and the harmonic mean aze related by this
formula

Harmonic Mean (unit) =
1

Arithmetic Mean (unit-’)

Throughout the paper, our conclusions are based on mean re-
sults. We assume that a mean workload consists in the execution
of the same number of instructions from each benchmark. For
each of these benchmarks, simulation results give a mesn temporal
cost in cycle per instruction (CPI). The right way of processing

the mean of IPC values is therefore the harmonic mean (the arith-

metic mean for CPI values).

The speedup of a given cortiiguration is the harmonic mean of
IPC results from simulations on the given cotilguration, divided
by the harmonic mean of IPC results from simulations on the
scalar processor.

■ Low

4. The Lookahead Window

4.1 Definition

The lookahead window is in fact an abstract representation of
the instructions being processed. An instruction enters the window

when it is dkpatched. It exits the window when it is retired. One

way to implement it is the coupling of a reorder buffer and reser-
vation stations. In this case, the lookahead window is exactly the

abstraction of the reorder buffer. The size of the window plays a

leading role in processor performance. As a matter of fact, the
lookahead window contains more and more instructions which can

be processed in parallel, as its size increases. But each additional

entry implies a hardware cost. We have therefore to minimize this

size. This section deals with the study of the impact of the size of
the Iookahead window on the performance of an out-of-order is-
sue superscalar processor. This study is made according to the as-
sumptions outlined in section 2. Moreover, in order to avoid

clouding results with an arbitrazy configurating of fitnctional
units, we assume an infiite number of units. Finally, one can re-
member that the size of the lookahead window of the PowerPC

604 is 16 entries.

4.2 CINT 92

Figure l-a plots the mean performance of the simulation re-
sults on integer programs, given in IPC, according to the size of

the lookaftead window. The speedups of superscalar cofilgura-
tions of degree 2, 4, 6, and 8, with regard to the scalar processor
described in section 2 are given in figures 1-b through 1-e respec-

tively. Indeed, it clearly appears in figure 1-a that a processor of

degree 8 does not significantly underperform a processor of de-
gree infiiite (at least when the size of the lookthead window is

within realistic values, i.e. lower than 100 entries). One can won-

der about the feasibility of a processor featuring a higher degree.

The lookahead window would have to be very lwge in order to

give substantial performance improvement over a processor of de-

gree 8. But this raises another problem which is tlhe validity of the

last instructions enqueued in the window: they would be depen-

dent on many predicted braztches.

Therefore, we limit our studies on out-of-order issue super-
scahir processors to degrees lesser or equaf to 8.

~ H-mean

12-
❑ H@ 25 5

n 2 =4

Degree CD = 1.5
10- . 11

23

n.
8=Z

Degree 10 w 0.5 *1

8- . -— -- —--— -“—-
Degree 8 0 0

—-_____ .— —-— - z%?zzgti~z $j%~zg;~

v Degree 6
. .

A6. . —------ -------- -------- -- Size of the Lookahead Window Size of the ILookahead Window

Degree 4 (b) Degree 2 (c) Degree 4
~——— ———. ———— ——. — _ 7 10

Degree 2 ~;
2

as

34 ;6

z 3 w 4

0
V)2 $

I # 1 I 1 I 1 I 1 I I 1 1 1
I

2
1 1 I 1 1 1 1

W% %!s,g~
; o

:~:g~g$$~~ a S?f%szg;z

Size of the Lookahead Whdow
. .

Size of the Lookahead Whdow
(a) IPC

Size of the Lookahead Window

(d) Degree 6 (e) Degree 8

Figure 1 — I~act of the Size of the Lookahead Window on Perforrrumce in Integer Programs

119

In figures l-b through l-e, the speedups level off for and after
a given size of the lookahead window. Moreover, as the degree

increases, the upper bound of IPC values moves away from the

degree itself. This degradation is due to data dependencies of
which the impact is much more important when the degree is high

(a processor of degree 2 leads roughly to a 2.0 IPC). Thus, ertlarg-

ing the lookahead window would not drastically increase the per-
formance because additional instructions would be, for the most

part, dependent on at least one other instruction previously en-
queued in the window.

However, the results are given for sizes of the lookahead win-
dow up to 256 entries. Nowadays, the PowerPC 604, for instance,

implements a 16-entry window. Therefore, sizes higher than 100

seem unrealistic for the next few years, but their associated results
are plotted for comparison. One can notice tha~ es previously out-

lined, such results do not show substantial wins.

Table 4 summarizes the best trade-offs concerning the size of
the lookehead window and the implied performance according to
the different out-of-order issue processors. The performance
degradation with regard to a 256-entry window for each degree, is
less than 6 VO. Perhaps a better-suited compiler will give improved
results for large window but certainly not enough to change our

conclusions.

Note that speedups are related to our scalar processor which

gives art IPC lower than one (0.945 IPC on CINT92 and 0.75 on
CFP92). This explains why speedups of any out-of-order super-
scahu processor can be higher than the degree.

Table 4 — Size of L.ookahead Win&ws (integer programs)

4.3 CFP 92

Figure 2-a plots the mean performance of simulation results on
the 14 floating-point programs, given in IPC, according to the size

of the lookahead window. Figures 2-b through 2-e show the

speedups with superscaler processors of degree 2, 4, 6, end 8 re-

spectively.

4.5

4

3.5

3

1.5

/_ <—--- --’ ---

De~eeA
_—— .——

----- —

Demee 2

We have not included in this paper the individual results for

each CFP92 benchmark. One has to know however that their be-
havior, according to the size of the Iookahead window, is highly
dissimilar as shown with the low and high bars. In spite of these
individual results, the curves of the harmonic means in figure 2-a
increase steadily. Therefore it seems that averaging those 14
benchmarks eliminates arty singulw vahres.

Figures 2-b through 2-e clearly state that a large lookahead
window is necessary for floating-point programs to best exploit
ILP. This is due to the fact that the floating-point programs in-
volve more depen&ncies then the integer progrants and/or the la-
tencies are longer (the mean IPC is lower). Floating-point pro-
grams require therefore a larger anticipation in order to overlap
several parallelizable operations like independent and successive
iterations of the same loop. As a resul~ the curves do not level off
anymore for sizes of the window lesser than 256.

From those results, we cannot determine cost-effective sizes of
the Iookahead window: high IPCS mean unrealistic sizes of the
window. Thus, we keep the sizes chosen in sub-section 4.2, know-
ing that the processor cannot exploit the whole ILP of the floeting-
point programs. Table 5 shows the best alternatives. It presents
the degradation of performance with regard to the performance of
a 256-entzy window contlguration

Table 5 — Size of Lookuhead Windows (jloating-point programs)

5. Configuration of Integer and Memory Units

5.1 Universal Integer Units

In usual programs, most instructions belong to the integer and

load/store instruction classes (see table 3). In order to evaluate

first how much and which integer and load/store units are needed
we do not limit the issuing of the other instruction classes. Thus,

any fueable instruction, except for memory access and mono-cy-

cle integer instructions, will be issued.

Low

H-mean

Size of the Lookahead Window

(b) Degree 2

Size of the Lookahead Wtndow

(d) Degree 6

5
4

3
2
1
0

.-*

Size of the Lookahead Window

(c) Degree 4

Size of the Lookahead Wtndow

(e) Degree 8
Figure 2 — Impact of the Size of the Lookahead Window on Performance in Floating-Point Programs

120

We fiist deal with two types of units :

* integer units which process only mono-cycle integer instruc-

tion,

0 the single load/store unit which implements multiple accesses
on the memory hierarchy.

Multiple cache por~ can be implemented in various ways. One

obvious way is the use of double-speed memories as implemented
in the IBM Power 2 [SmWe94], and another is to use an inter-

leaved structure in order to access multiple banks simultaneously

provided there is no conflict. This latter solution is implemented

in the Intel Pentium @te93] and the SGI TFP [Hsu94]. In the Dec

Alpha 21164, 2 mirrored banks are implemented in order to fea-

ture 2 load pints [Dee 95]. Consequently, no access can be issued

simultaneously with a store.

As caches are not modeled, we do not attend to a spec~lc
cache structure. Thus, the only issuing restriction on memory in-

structions is the number of ports available.

Figures 3-a through 3-d show the mean performance from

2- —————/

1.5 - .

u
&l. .

0.5 - .

0 I 1 8 I 1 #
, I 1 1 1 1 i
1 2 3 4 5 6 7 8

simulations on the integer programs (given in IPC) according to

the number of integer units and of memory ports.

Figure 3-a clearly states that, in a processor of degree z 2 in-
teger units and 2 memory ports give 99V0 of the ideal performance
(unlimited number of functional units). However, 2 integer units
and 1 memory port is certainly the most cost-effective configura-

tion, reaching 9570 of the idd performance. Moreover, adding in-
teger units gives roughly no increase of performance.

Figure 3-b highlights the requirement on 2 data cache ports. A

processor of degree 4 featuring three integer units and two data

cache ports represents a substantial win (92.1 Yo),

The same arguments apply in a processor of degree 6 but for
four integer units and three data cache ports as shown in figure

3-c, passing beyond 92% of the iderd performance.

Finally, as shown in figure 3-d, a processor of degree 8 re-
quires one additional integer unit and one additionrd memory port.
Consequently, the performance degradation is lower than 9 %.

Another important point to emphasize would be the addition in
each configuration of one more memory port, Ir[de~ this would

1.5

1

0.5

1

‘ -—+—4
1 2 4 7 8

Integer Units

F=xEl

Integer Units

(a) Degree 2 (b) Degree 4

6— I_

~>------- ——===X ==:= -_-_—-

5. -
6. -/<-------------------- ----

,). ‘

f

. 5. ._— -— —— —— ——-“
4. . /—

!;’Y ‘
4- .

g 3. J“
g

- 3- .,,
~

2.
#

2.

-—.. -— -- —--_-- —-
,/-,/-—-—” — ‘— -—-—--

/,”/ ------- ---
~/ . -- ”-----------

g; -
/.!.”f______ –_____

~;,’

//

:l_, I-l-H-+-,
1 2 3 4 5 6 7 8 1 2 3 4

Integer Units Integer Units

(c) Degree 6 (d) Degree 8

Figure 3 — Performance Effect of Integer Units and of Da/a Cache Ports

121

nearly lead to a 5910 improvement. Nevertheless, such conilgura-
tions me not cost-effective because of the hardware cost of adding

one cache port. Moreover, varying the number of address process-

ing do not give better alternatives.

Results are not reported here for floating-point programs : the

outlined cxmtlguratiorts behave the same way concerning memory

ports.

Table 6 summarizes these results.

Integer/Memory/Address

Table 6 — Configurations of Functwnal Units (integer units and
memory ports)

5.2 Shift Units

Up to now, we consider that mono-cycle integer units were

handling all classes of integer instructions as in the PowerPC 604,

namely arithmetic, logic and shift instructions (integer and shift
instruction classes). We must consider, as in the MC881 10, the
case where some units handle part of these classes. Mixed alter-
natives have also to be considered. For instance, a configuration
can feature several units handling both instruction classes and oth-

ers handling one of them. Note that such a solution does not in-

crease the complexity of the control (i.e. the cycle time) since a

(a) Degree 2

(b) Degree 4

priority list of units associated with each instruction class, can be

set up in order to help the dispatch. Moreover, the priori~ has to

favour the instruction d~patch in units handling only one instruc-
tion class.

In figures 4-a through 4-d, ISFU is a unit handling arithmetic,
logic and shift instructions, IFU is a ttnit handling only arithmetic
and logic instructions while SFU stands for a unit which handles
only shift instructions. The listed contlgurations are ordered by in-
creasing costs.

From all these results, it is clear that the extreme alternatives
are not good solutions since they are either too costly or they give
poor performance. In a processor of degree 2 or 4, a single ISFU
has to be implemented while the others are IFUS. Such cotilgura-
tions give more than 99.870 of the perfortmmce of cortf@trations
with only ISFUS. We thus have an economy on silicon area with a

negligible performartce loss. on the contrary, replacing one more

IFU by one ISFU in processors of degree 6 and 8 are cost-effec-

tive, and leads to a large increase of performance of 1.19. and 2.4
% respectively.

Furthermore, simulations which are not reported here, show
that featuring one or several functional units handling multi-cycle
instructions gives the same results.

Finally, table 7 below summarizes all these observations and

gives the cost-effective configurations. As in previous tables,
speedups are given related to our in-order scalar urocessor.

Table 7 — Configurations of Functional Units (CINT92)

6. Floating-point Units

In most superscalar processors, all floating-point instructions
are handled by specific floating-point units. ~ implies that the

integer and floating-point data paths are decoupled as in the

PowerPC 604. In order to exploit best ILP, it seems that several

floating-point units have to be implemented. Table 1 shows vmi-
ous ways of implementing such units.

(c) Degree 6 (d) Degree 8

Figure 4 — Performance of Various Configurations of the Integer Um”ts

122

Figure 5 reports on the impact of the number of issues of each sidered processors of degree 2, 4, and 6, as well as a more aggres-

floating-point instruction class on performance. The conflgura- sive processor of degree 8 while taking into account only register

tions listed in table 7 ae used in this section. Figure 5 states that and memory data dependencies. We have therefore ended up with

only one issue is required for all these classes except for divides cot-dlgurations which are expected not to cloud the results of fur-

which distinctively feature a non-pipelined execution with a long ther studies. The defined corti3gurations feature 5 units in a pro-

latency. Furthermore, the number of executed divides is low, and

thus multiple issues are required primarily to allow simultaneous
executions. A divide unit can therefore be merged with another
unit without a significant loss of performance as long as sub-units

are implemented.

Consequently, we deftne ajloating-point unit (FPU) as a unit
capable of servicing all classes. In such a unig divides do not stall

following issues since such instructions are executed in rm inde-

pendent sub-unit.

CL

(a) Degree 2 ~
m

Figure 6 plots the speedup of cordlgurations according to the

number of floating-point units. For a processor of degree 2, a

configuration with one unit provides 939’0 of the performance of a
configuration featuring rm inftnite number of FPUS. Processors of
degree 4, 6, and 8 require 2 FPUS to achieve 96 %, 949., and

92 Y. respectively. Table 8 gives the associated speedups.

~T.::.:~e~Qf*$;@g~*~;$:<: ~;.+$~j:,. ,;g’;, “~q;”’”
G

FPU 1 2 2 2
(b) Degree 4 ~

“’; sp&dq@w92~;””” ‘,”umi +2,63$.iXM?fi’ ;:+!!?!$
VI..,,,, ,,,,,,,,, ,,,,,,.,,,,,,.,.,,,,.,,,.,.,,,.,.,.,,,.,. ,.,,.,...

,,

Table 8 — Configurations of Functional Units (CFP92)

7. Occupation Rates of the Functional Units

Tables 9 and 10 report on the occupation rates of the previ-
ously defiied conilgurations of functional units.

8. Concluding Remarks

In this paper, we have summarized the results of simulations
intended to determine cost-effective configurations of functional
units in order to exploit instruction-level parallelism in out-of-

order superscah processors. Throughout the paper, we have con-

gj!

(c) Degree 6 ~
V3

Number of Units

(a) Degree 2

2

1.5

t

1 ------D&idea

0.5
— --— Muttiplirs
—— Adds I

I ——
o~-,

Nmnber~f Issues

2+

1

t

4—-t--+-
1 2

Nmnber~f Issues
4

2

t

l-l-~,
1 2

Nurnber~f Issues

‘T
4

E

---- —
-* -----

●. .
3

2

1

0 U5
1 2

Nmnber~f Issues

Figure 5 — Impact of the Number of Floating-Point Units

7 10

4
6

5
8

33 4 6

12 3 4

2
1

1
2

0 0 0
1 23 4 5- 1 23 4 5- 1 2345=-

Number of Units Numbsr of UNts Number of Units

(b) Degree 4 (c) Degree 6 (d) Degreo 8

Figure 6 — Performance of Various Configurations of the Floating-Point Units

123

cessor of degree 2, and up to 9 units in a processor of degree 8.

These configurations are listed in table 11’.

Table 9 — Occupation Rates (CINT92)

Table 10 — Occupation Rates (CFP92)

Table 11 — Final Configurations of Functional Units

The two three-dimensional graphs summarizes speedups with

regard to the in-order scalar processor, with the same assumptions

M Previously. We consider the increase of the size of the Ioo~-
head window and of the degree of the processor (X axis), and the

addition of functional units and of data cache ports (Y axis). We
are mainly interested in comparison with the executive configura-
tion of the PowerPC 604 (16-entry lookahead window, degree 4,

base).

&
-8
ii

Ur

ry POrr

Porl

D2-W16 r

Figure 7 — CINT 92

* the load/store uni~ whatever the number of memory ports may
be, is deseribed as a single unit.

The fust chart, which concerns integer benchmarks, confkrns
our choices. For a given degree, bigger conilgurations present
roughly no win. The chart also brings to light that adding one

cache port and one IFU to a PowerPC 604 configuration improves
the performance by more than 36 %. Our best configuration which
is a processor of degree 8 with 4 cache ports and 3 additional inte-

ger units, gives a 2.86 speedup with regard to the executive con-
figuration of the PowerPC 604. On the contrary, lowering the

number of issues to two instructions par cycle leads to a 14 % per-

formance degradation.

Throughout this study, we assume that these improvements
can be made without &grading the cycle time.

D>W16 ‘

Figure 8 — CFP92

The second chart presents simulation results on floating-point
programs. The same results can be highlighted. The speedup of
the best cotilguration with regard to the executive contlguration

of the PowerPC 604 is 2.09. One can note that adding a floatirtg-

point unit to a PowerPC604 cordlguration gives only a 6.7 % im-
provement of performance.

9. Acknowledgements

We would like to express our thanks to Bhaskar Janakiramq

Joan Eslinger, Jack Carter, and Sassan Hazeghi (SGI) for their

kindly help with Pixie.

10. References

~uPa92]

[Dec95]

[Hsu94]

flbMo94]

flnte93]

[John91]

M. Butler and Y. Patt, “An Investigation of the Per-
formance of Various Dynamic Scheduling tech-

niques”, Proceedings of the 25th Annual Internatio-
nal Symposium on Microarchitecture, Decem-ber

1992

DEC, “Scheduling and Issuing Rules for the Alpha

21164”, Product Documentation, November 1994

P. Yan-Tek Hsu, “Designing the TFP Microproces-
sor”, IEEE Micro, April 1994

IBM, “PowerPC 604 RISC Microprocessor Techni-
cal Summary”, IBM Advance Information,
MPR604TSU-1, 1994

Intel, “Pentium Processor User’s Manual”, 1993

M. Johnson, “Superscalar Microprocessor Design,

Prentice-Hall, 1991

124

[Mips94]

[Moto91]

[Smit91]

[SmP185]

[SmWe94]

[SPEC92]

[sun95]

~oma67]

[YePa92]

MIPS, “R1OOOOMicroprocessor Product Overview”,

October, 1994

Motorola. “MC881 10: Second Generation RISC
Microprocessor User’s Mamrai”, 1991.

M.D. Smith, “Tracing with Pixie”, Stanford Uni-
versity, April 1991

J.E. Smith, A.R. Pleszkun, “Implementation of
Precise Interrupts in Pipelined Processors”, Procee-
dings of the 12th Annual International Symposium
on Computer Architecture, June 1985

J.E. Smith and S. Weiss, “Power and PowerPC,
Principles, Architecture, Implementation”, Morgan

Kaujhumn Publishers, Inc., 1994

SPEC 92 — Technical Manual — Rev. 1.1, 1992

SUN, “UltraSparc: Next Generation Superscalar 64-

Bit Spare”, Compcon 95, 1995

R.M. Tomasuio, “An efficient Algorithm for Ex-

ploiting Multiple Arithmetic Units”, IBM Journal,
vol. 11, January 1967.

T.Y. Yeh and Y.N. Patt, “A Comprehensive Ins-
truction Fetch Mechanism for a Processor Suppor-
ting Speculative Execution”, Proceedings of the 25th

Annual Symposium on Microarchitecture, Portland,
Oregon, Decernher 1992.

125

