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Abstract
Reconfigurable hardware has the potential for significant
performance improvements by providing support for
application−specific operations. We report our experience with
Chimaera, a prototype system that integrates a small and fast
reconfigurable functional unit (RFU) into the pipeline of an
aggressive, dynamically−scheduled superscalar processor.
Chimaera is capable of performing 9−input/1−output
operations on integer data. We discuss the Chimaera C compiler
that automatically maps computations for execution in the RFU.
Chimaera is capable of: (1) collapsing a set of instructions into
RFU operations, (2) converting control−flow into RFU
operations, and (3) supporting a more powerful fine−grain
data−parallel model than that supported by current multimedia
extension instruction sets (for integer operations). Using a set of
multimedia and communication applications we show that even
with simple optimizations, the Chimaera C compiler is able to
map 22% of all instructions to the RFU on the average. A
variety of computations are mapped into RFU operations
ranging from as simple as add/sub−shift pairs to operations of
more than 10 instructions including several branches. Timing
experiments demonstrate that for a 4−way out−of−order
superscalar processor Chimaera results in average performance
improvements of 21%, assuming a very aggressive core
processor design (most pessimistic RFU latency model) and
communication overheads from and to the RFU. 

1 Introduction
Traditionally, instruction set architectures (ISAs) have been
designed to provide primitives that facilitate low−cost and low−
complexity implementations while offering high performance
for a broad spectrum of applications. However, in some cases,
offering specialized operations tailored toward specific
application domains can result in significant performance
benefits. Unfortunately, this is easier said than done as deciding
what operations to support is challenging. Such operations
should be specialized enough to allow significant performance
benefits, and at the same time, they should be general enough so
that they are useful for a variety of applications. More

importantly, we have to decide whether any of the current
performance benefits justify the risks associated with
introducing new instructions in the ISA. Such instructions may
become defunct as software evolves and may adversely impact
future hardware implementations.

Reconfigurable hardware has the potential for providing a
convenient way to address most of the aforementioned concerns.
It may significantly improve performance by tailoring its
operation on a per application basis. Moreover, since the type of
specialized operations is not fixed in the ISA, reconfigurable
hardware has the potential to evolve with the applications. As
increasingly higher levels of on−chip resources are anticipated,
reconfigurable capable systems provide a potentially fruitful
way of utilizing such resources. Furthermore, the increasing
popularity of multimedia applications provides an excellent
target for reconfigurable hardware [8]. However, for this
potential to materialize we need both the reconfigurable
hardware and a way of converting software so that we can
exploit it. While it is possible to hand−map applications to
exploit reconfigurable hardware, writing working software is
already complicated enough. For this reason, an automated
process is highly desirable. In this paper, we discuss our
experience with designing Chimaera [9], a reconfigurable−
hardware−based architecture and our experience with providing
compiler support for it. In particular, in this paper we: (1)
review the design of Chimaera, (2) explain how it can be
integrated into a modern, dynamically−scheduled superscalar
pipeline, (3) describe the compiler optimizations we used to
exploit Chimaera, and (4) study the resulting performance
tradeoffs. 

Chimaera tightly couples a processor and a reconfigurable
functional unit (RFU). This RFU is a small and fast field−
programmable−gate−array−like (FPGA) device which can
implement application specific operations. For example, an RFU
operation (RFUOP) can efficiently compute several data−
dependent operations (e.g., tmp=R2−R3; R5=tmp+R1),
conditional evaluations (e.g., if (a>88) a=b+3), or multiple sub−
word operations (e.g., "a = a + 3; b = c << 2", where a, b and c
are half−word long). In Chimaera, the RFU is capable of
performing computations that use up to 9 input registers and
produce a single register result. The RFU is tightly integrated
with the processor core to allow fast operation (in contrast to
typical FPGAs which are build as discrete components and that
are relatively slow). More information about the Chimaera
architecture is given in Section 2.

Chimaera has the following potential advantages: 

1. The RFU may reduce the execution time of dependent
operations. By tailoring its datapath for specific operations,
the RFU may perform several dependent operations in less
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time than it takes to execute each of the operations
individually. 

2. The RFU may reduce dynamic branch count by collapsing
code containing control flow into an RFU operation. In this
case the RFU speculatively executes all branch paths and
internally selects the appropriate one.

3. The RFU may exploit sub−word parallelism. Using the bit−
level flexibility of the RFU, several sub−word operations
can be performed in parallel. While this is similar to what
typical multimedia instruction set extensions do, the RFU−
based approach is more general. Not only the operations that
can be combined are not fixed in the ISA definition, but
also, they do not have to be the same. For example, an RFU
operation could combine 2 byte adds and 2 byte subtracts.
Moreover, it could combine four byte−wide conditional
moves.

4. The RFU may reduce resource contention as several
instructions are replaced by a single one. These resources
include instruction issue bandwidth, writeback bandwidth,
reservation stations and functional units.

To exploit the aforementioned opportunities we have developed
a C compiler for Chimaera. We found that even though our
compiler uses very simple, first−cut optimizations, it can
effectively map computations to the RFU. Moreover, the
computations mapped are diverse. 

In this paper, we study the performance of Chimaera under a
variety of both timing and RFU mapping assumptions ranging
from optimistic to very pessimistic. We demonstrate that, for
most programs, performance is sensitive to both the latency of
the RFU and the aggressiveness of the synthesis process (in
synthesis we map a set of instructions into an RFU operation
and construct the RFU datapath). For some programs, Chimaera
offers significant performance improvements even under
pessimistic assumptions. Under models that approximate our
current prototype of Chimaera’s core RFU, we observe average
speedups in between 31% (somewhat optimistic) and 21%
(somewhat pessimistic).

The rest of this paper is organized as follows: In Section 2 we
review the Chimaera RFU architecture and discuss how we
integrate the RFU into a typical superscalar pipeline. In Section
3 we discuss the compiler support. In Section 4 we review
related work. In Section 5 we present our experimental results.
Finally, in Section 6 we summarize our findings.

2. The Chimaera Architecture
The Chimaera architecture, as we show in Figure 1 (more
detailed information about the RFU can be found in [9]),
comprises the following components: (1) The reconfigurable
array (RA), (2) the shadow register file (SRF), (3) the execution
control unit (ECU), and (4) the configuration control and
caching unit (CCCU). The RA is where operations are executed.
The ECU decodes the incoming instruction stream and directs
execution. The ECU communicates with the control logic of the
host processor for coordinating execution of RFU operations.
The CCCU is responsible for loading and caching configuration
data. Finally, the SRF provides input data to the RA for
manipulation.

In the core of the RFU lies the RA. The RA is a collection of
programmable logic blocks organized as interconnected rows
(32 in our prototype). Each row contains a number of logic
blocks, one per bit in the largest supported register data type (32
in our case). In Figure 2, we show the  implementation of a logic

block. The logic block itself can be configured as a 4 lookup−
table (LUT), two 3−LUTs, or a 3−LUT and a carry computation.
Across a single row, all logic blocks share a fast−carry logic
which is used to implement fast addition and subtraction
operations. By using this organization, arithmetic operations
such as addition, subtraction, comparison, and parity can be
supported very efficiently. The routing structure of Chimaera is
also optimized for such operations. 

Input data is supplied via the Shadow Register File (SRF) which
is a physical, partial copy of the actual register file. It is
organized as a single row containing copies of all logical
registers. This allows single register write access from the host
processor and allows the RA to read all registers at once.
Physically, registers in the SRF are organized in a bit−
interleaved fashion. This is because, all cells in each column of
the RA have access to the corresponding bit of all registers.
Which register(s) a cell accesses is determined by its
configuration as we explain later on. Different cells within the
array can choose which registers to access independently.

During program execution, the RA may contain configurations
for multiple RFU operations (RFUOPs). A configuration is a
collection of bits that when appropriately loaded in the RA
implements a desired operation. So long as there is sufficient
space in the RA there is no need to reload an RFUOP
configuration every time the corresponding RFUOP is executed.
Managing the set of RFUOPs that are loaded in the RA is the
responsibility of the ECU and the CCCU. The CCCU loads
configurations in the RA, provides fast access to recently
evicted configurations through caching, and provides the
interfaces necessary to communicate with the rest of the
memory hierarchy. The ECU decodes the instruction stream. It
detects RFUOPs and guides their execution through the RA and
if necessary notifies the CCCU of currently unloaded
configurations. At any given point in time, multiple RFUOP
configurations can be present in the RA (provided that there is
enough space). We assume that a program cannot modify its
own configuration data during execution. However, the CCCU
snoops write traffic for writes to the configuration space. If such
a write is detected, an exception is raised so that the RA can be
flushed and updated.

Each RFUOP instruction is associated with a configuration and
an ID. The ID serves to identify the appropriate configuration.

Figure 1: Overview of the Chimaera Architecture
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The compiler generates configurations and their IDs. The linker
places these configurations into the program’s address−space
and also generates a vector table pointing to the beginning of
each generated configuration. At run−time, and upon detection
of an RFUOP, the ECU initiates a trap to load the appropriate
configuration in place. While the configuration is being loaded,
execution is stalled. In our prototype implementation, each row
requires 1674 bits of configuration. If the working set of
RFUOPs is relatively small (which as we show is the case for
the benchmarks studied), this configuration overhead can be
amortized over multiple executions of the same RFUOP.
Moreover, a cache of configurations is maintained to reduce
configuration loading latency.

The RFUOP instruction format is shown in Figure 3(a). It
consists of the RFUOP identifying opcode, of an ID, and of a
destination register number. Notably, no input operand
information is provided. Recall, that the configuration itself
routes the appropriate input data. However, the identities of the
input registers are required for out−of−order scheduling. In our
implementation this information is provided in the configuration
data whose layout is shown in Figure 3(b). It consists of a 32−
bit vector that records the source operands, the number of rows
required and the actual configuration bits. For out−of−order
scheduling, the ECU maintains a record (up to 32 entries) of the
input vectors for all RFUOPs currently loaded in the RA. 

To interface with the out−of−order core and to allow out−of−
order execution of RFUOPs, we provide a separate, small
RFUOP scheduler. This scheduler follows the RUU model [28].
It operates as follows: Upon encountering an RFUOP, the ECU
allocates a dummy entry in the scheduler of the OOO core. This
entry is used to maintain in−order commits and to support
control−speculative execution (the OOO notifies the RFUOP
scheduler of miss−speculations using the dummy entry). Based
on the input vector data, the ECU also allocates an entry in the
RFUOP scheduler marking the location of all desired input
register (this is done by maintaining a shadow register renaming
table that allows single cycle access to all entries). Moreover,

the single target register of the RFUOP is renamed by the OOO
core. Having marked all input dependences, and having renamed
the single output register, RFUOP scheduling proceeds in the
same fashion as regular instruction scheduling. In all
experiments we assume a single−issue capable RFUOP
scheduler since this significantly simplifies its design and allows
easy integration with the current RA prototype.

A standalone prototype of the RA was fabricated and is tested.
The chip was fabricated in a .5 um, 3−layer CMOS process
using MOSIS. It should be noted that in an actual system, the
RA will be implemented with the same technology as the
processor core. The worst case path through a single logic block
in the current prototype consists of 23 transistor levels. Modern
microprocessors exhibit great variety on the number of
transistor levels operating within a single clock cycle. For
example, an aggressive implementation allows up to 12
transistor levels per clock cycle[5] (six 2−input gates) while
another design allows up to 24 transistors levels per clock cycle
[11] (eight 3−input gates). By utilizing the Elmore delay model
[35], we estimated the worst case delay through each RA row to
be within 0.96 to 1.9 cycles for implementations with 24 and 12
transistor levels respectively. Each row is capable or
implementing most single integer instructions in a typical ISA
(e.g., addition, logic operations and shifts but not multiplication
or loads and stores). However, logic blocks are capable of
performing some complex computations. Table 1 shows the
mapping and timing for a set of common 32−bit computations.
The first row reports the critical path length through the RA in
transistor levels. The second row shows the required number of
RA rows. The third row reports the height of the equivalent
dataflow graph. Finally, the fourth row shows the latency of this
computation as a function of the processor’s cycle assuming an
aggressive processor with only 12 transistor levels per clock
cycle. It can be seen that the RFU introduces overheads when
implementing a single instruction (e.g., r1 + r2). For combined
operations, however, the RFU offers competitive or better
latency. A detailed description of the RFUOP latency models we
used is given in Section 5.1.1. 

3. Compiler  Support
We have developed a C compiler for Chimaera to automatically
map groups of instructions to RFUOPs. The compiler is built
over the widely available GCC framework, version 2.6.3. We
introduced the following three RFUOP−specific optimizations:
Instruction Combination, Control Localization, and SIMD
Within A Register (SWAR). Here we provide an overview of
these optimizations. More information is provided in [36].

The core optimization is Instruction Combination, which
extracts RFUOPs from a sequence of instructions with no
intermediate control flow. It works by analyzing the DFG and
by extracting subgraphs that consist of multiple RFU−efficient

Figure 2: Logic Cell Structure
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Adpcmdecoder() 
{
int vpdiff, step, delta;
...
vpdiff=rfuop(delta,vpdiff, step)
...
}

(c)

nodes. RFU−efficient nodes correspond to instructions that can
be mapped in the RFU (e.g., adds, logic operations and shifts).
Each sub−graph must have a single register output (intermediate
outputs are allowed provided that they are not used outside the
sub−graph). Recall, that an RFUOP can produce only a single
register result.    Each of the subgraphs is mapped to an RFUOP.

To increase opportunities for instruction combination, the
compiler first performs the other two optimizations. Control
localization transforms branch containing sequences into
temporary, aggregate instructions, which can be treated as a
single unit by instruction combination [18].

The SWAR optimization identifies sub−word operations that can
be executed in parallel. In the current implementation, it
searches for opportunities to pack several 8−bit operations into a
single word operation. In most cases, this pattern exists in loops
with unit stride. Unfortunately, due to the lack of an alias
analysis phase, our current prototype cannot apply this
optimization without endangering correctness. For this reason,
we have disabled this optimization for all experiments.

Figure 4 shows an example of the compilation process on the
adpcm_decoder function which appears in the adpcm.dec
benchmark (see Section 5 for a description of the benchmarks).
Part of the original source code is shown in part (a). The code
after control localization is shown in (b). The
"d=tempx(s1,...,sn)" notation refers to a temporary instruction
whose source operands are s1 to sn and destination is d. As
shown, the three "if" statements are first converted into three
temporary instructions, forming a single−entry/single−exit
instruction sequence. The instruction combination phase then
maps all three instructions into a single RFUOP, as shown in
part (c).

4. Related Work
Numerous reconfigurable−hardware−based architectures have
been proposed. We can roughly divide them into two categories,
those that target coarse, loop−level optimizations and those that
target fine−grain, instruction−level optimizations. The two
approaches are complementary.

The loop−level systems are capable of highly−optimized
implementations (e.g., a pipeline) for whole loops. GARP [13],
Napa [27], PipeRench [8], Rapid [4], Xputer [10], and RAW
[34] are examples of such systems. The success of this approach
lies on the compiler’s ability to perform extensive loop and
memory disambiguation analysis which is typically required to
decide whether and how a loop can be pipelined or parallelized.
Nevertheless, such systems can utilize large amounts of
parallelism (coarse−grain) provided that such parallelism exists
in the target application.

Instruction−level systems target fine−grain specialization
opportunities. They are capable of building functional units that
can implement the operation of several instructions. Chimaera
[9], PRISC [25, 26], DISC [33], and OneChip [31] are
instruction−level systems. Besides implementation details,
Chimaera differs from other systems primarily in that it supports
a 9−input/1−output instruction model.

Restricted forms of optimizations similar to those Chimaera is
capable of can be found in several existing architectures. Many
architectures provide support for collapsing a small number of
data dependent operations into a single, combined operation. For
example, many DSPs provide Multiply/Add instructions. So
does IBM’s Power architecture [7, 21] and several other ISAs.
Phillips and Vassiliadis [23] proposed a 3−1 interlock collapsing
ALU, capable of 3−input complex expressions. Sazeides,
Vassiliadis, and Smith [29] analyzed the performance potential
of collapsing several data−dependent operations into single−
cycle equivalents. 

Most current ISAs have added support for SIMD subword
operations and for supporting operations tailored to multimedia
applications (e.g., saturating arithmetic) [15,19,22,24,30].
Chimaera provides a more general model subword−parallelism
model as the operation itself is not restricted by the ISA.
Moreover, Chimaera can combine several subword operations
into a single word−wide operation, even when the operations are
different (e.g., two adds and two xors). Strictly speaking, this is
not SIMD, rather, it is MIMD within the aggregate instruction.
Finally, the number of input registers can be as large as 9. 

Figure 4: An example of the Chimaera optimizations. (a) Original code. (b) Code after control localization. (c) Code after instruction
combination. The example is taken from the adpcm.dec Mediabench benchmark.

Adpcmdecoder() 
{
int vpdiff, step, delta;
...
vpdiff=rfuop(delta,vpdiff, step)
...
}

(c)

Adpcmdecoder() 
{
int vpdiff, step, delta;
...
vpdiff = step >> 3;
if ( delta & 4 ) vpdiff += step;
if ( delta & 2 ) vpdiff += step>>1;
if ( delta & 1 ) vpdiff += step>>2;
...
}

(a)

Adpcmdecoder() 
{
int vpdiff, step, delta;
...
vpdiff = step >> 3;
vpdiff=temp1(delta, vpdiff, step);
vpdiff=temp2(delta, vpdiff, step);
vpdiff=temp3(delta, vpdiff, step);
...
}

(b)

r1 + r2 r1 + r2 << 2 r1 + (r2 & 5) if (r1>r2) r5=r3+r4
Critical path    ( transistors) 19 20 19 23

RA rows 1 1 1 2

Dataflow graph height 1 2 2 2

Latency (processor cycles) 1.58 1.67 1.58 1.96
Table 1: Critical path through the RFU’s RA for some operations assuming 12 transistor levels per processor cycle.
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Finally, Chimaera can map code containing control−flow into a
single operation. A similar effect is possible with predicated
execution (e.g., [1, 2, 6, 17]). Internally, the RFU computes all
possible paths and at the end selects only the appropriate one. A
similar effect is possible with the more general multiple−path
execution models [14,16, 32].

5. Evaluation
In this section, we present our experimental analysis of a model
of the Chimaera architecture. In Section 5.1, we discuss our
methodology. There we also discuss the various RFUOP latency
models we used in our experiments. In Section 5.2, we present
an analysis of the RFUOPs generated. In Section 5.3 we provide
statistics on the working set of RFUOPs. This is significant, as
execution has to be stalled while loading the configuration of a
newly encountered RFUOP. Finally, in Section 5.3, we measure
the performance impact of our RFU optimizations under an
aggressive, dynamically−scheduled superscalar environment.  

5.1 Methodology
We used benchmarks from the Mediabench [20] and the
Honeywell [12] benchmark suites. Table 3 provides a
description of these benchmarks. The Honeywell benchmark
suite has been used extensively in testing the performance of
reconfigurable systems. For all benchmarks we have used the
default input data set. While in some cases the resulting
instruction count appears relatively small, we note that due to
their nature, even such short runs are indicative of the program’s
behavior. We have compiled these benchmarks, using the
Chimaera C Compiler, a modified version of GCC version 2.6.3.
We used profiling to identify candidate functions for

optimization. 

For performance measurements we have used execution−driven
timing simulation. We build our simulator over the widely
available Simplescalar simulation environment [3]. The
instruction set architecture (ISA) is an extension of the MIPS
ISA with embedded RFUOPs. By appropriately choosing the
opcode and the Rd field of the RFUOP format, RFUOPs appear
as NOOPs under the MIPS ISA. For our experiments we have

Component Configuration

Superscalar Core

Branch predictor 64k GSHARE

Scheduler Out−of−order issue of up to 4 operations per cycle, 128 entry re−order buffer (RUU), 32 entry
load/store queue(LSQ)

Functional units 4 integer ALUs, 1 integer MULT, 4 FP adders, 1 FP mult/div

Functional unit latencies Integer ALU 1, integer MULT 3, integer DIV 12, FP adder 12, FP MULT 4, FP DIV 12, load/store
1

Instruction cache 32kb Direct−Mapped, 32−byte block, 1 cycle hit latency

Data cache 32kb Direct−Mapped, write−back, write−allocate, non−blocking, 32−byte blocks, 1 cycle hit
latency

L2 cache Unified 4−way set associative, 128k byte, 12 cycles hit latency

Main memory Infinite size, 100 cycles latency

Fetch Mechanism Up to 4 instructions per cycle

Reconfigurable Functional Unit 

Scheduler 8 entries. Each entry corresponds to a single RFUOP
Single Issue, Single Write−back per cycle.
An RFUOP can issue if all its inputs are available and no other instance of the same RFUOP is
currently executing.

Functional Unit / RA 32 rows. Each RFUOP occupies as many rows as instructions of the original program it replaced
(pessimistic)
Only a single instance of each RFUOP can be active at any given point in time.

Configuration Loading 1−st level configuration cache of 32 configuration rows (32 x 210 bytes).
Configuration loading is modeled by injecting accesses to the rest of the memory hierarchy.
Execution stalls for the duration of configuration loading.

RFUOP Latency Various model simulated. See Section 5.1.1.

Table 2: Base configuration for timing experiments.

Benchmark Description Inst. Count

MediaBench Benchmarks

Mpegenc Mpeg encoder 1139.0 M

G721enc CCITT G.721 voice encoder 309.0 M

G721dec CCITT G.721 voice decoder 294.0 M

Adpcm enc Speech compression 6.6 M

Adpcm dec Speech decompression 5.6 M

Pegwitkey Pehwit key generation. Pegwit is a
public key encryption and
authentication application.

12.3 M

Pegwitenc Pegwit encryption 23.9 M

Pegwitdec Pegwit decryption 12.5 M

Honeywell Benchmarks

Comp Image compression 34.1 M

Decomp Image decompression 32.7 M

Table 3: Benchmark characteristics.
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used the base configuration shown in Table 2. This models an
aggressive, 4−way dynamically−scheduled superscalar
processor. In some experiments we also use a model of an 8−
way processor which is derived for the 4−way configuration by
doubling issue width (and all other appropriate stages) and
instruction window size. The RFU configuration we used is also
shown in Table 2. When the RFU is in place the maximum
number of instructions that can pass through decode, fetch,
write−back and commit is still limited to 4 including any
RFUOPs. Furthermore, only a single RFUOP can issue per
cycle.

5.1.1 Modeling RFUOP Latency
To study performance it is necessary to express RFUOP
execution latencies in terms of processor cycles. These latencies
can be modeled accurately using a specific processor/RFU
implementation and a synthesis (i.e., RFU configuration)
algorithm. While valuable, the utility of such a model will be
limited to the specific configuration and synthesis algorithm.
Since our goal is to understand the performance tradeoffs that
exist in the Chimaera architecture, we have experimented with
several RFUOP latency models which are summarized in Table
4. 

Original Instruction−based Models 
Model C 2C 3C 1 2 N

CPU cycles c 2*c 3*c 1 2 n

Transistor−Level−based Models
Model P24_0 P24_1 P12_0 P12_1

CPU cycles t/24 t/24+1 t/12 t/12+1
Table 4: RFUOP latency models. "c" is the critical path length
of the original dataflow graph an RFUOP replaces. "n" is the
number of the original instructions replaced by each RFUOP.
"t" is the number of transistor levels in an RFUOP. 

We use a two−tiered approach. First, we utilize latency models
that are based on the original instruction sequence each RFUOP
replaces. These models provide us with insight on the latencies
the RFU should be able to sustain to make this a fruitful
approach. These are reported as original−instruction−based
models in Table 4. Models C, 2C and 3C model RFUOP latency
as a function of the critical path c of the equivalent original
program computation. To provide additional insight we also
modeled fixed RFU latencies of 1, 2 and n cycles where n is the
number of the original program instructions mapped in the
RFUOP. The 1 and 2 cycle models offer upper bounds on the
performance improvements possible with the current Chimaera
compiler.

We also utilize transistor−level−based models. We first hand−
mapped each RFUOP into an efficient RFU configuration and
measured the number of transistor levels appearing in the
critical path. We then calculated latencies for various base
processor configurations. Using published data on the number of
transistor levels per clock cycle for modern processors we
developed the following four timing models: P24_0, P12_0,
P24_1 and P12_1. Models P24_0 and P12_0 assume designs
with 24 and 12 transistor levels per cycle. P24_0 corresponds to
a design with eight 3−input gates per clock cycle such as the one
in [11]. P12_0 assumes a more aggressive base processor
pipeline with only six 2−input gates per clock cycle, such as the
one as in [5]. To model the possibility of extra delays over the
interconnect to and from the RFU we also include models P24_1
and P12_1 which include an additional cycle of latency over

P24_0 and P12_0 respectively. Model P24_0 is the most
optimistic while model P12_1 is the most pessimistic.

5.2 RFUOP Analysis
In this section we present an analysis of RFUOP characteristics.
Our goal is to provide insight on the type of computations our
current prototype of Chimaera is servicing. We measure the
total number of instructions mapped to RFUOPs and the
distribution of RFUOP sizes in terms of the number and type of
original instructions they replace. We also present
measurements of the critical path of the computation RFUOPs
replace. Then, we take a close look at the internals of some of
the RFUOPs. Finally, we present results on the number of
transistor levels used to implement RFUOPs in the RA.

Table 5 shows statistics on the number of instructions mapped to
RFUOPs. Under the "IC" columns we report the dynamic
instruction count of the Chimaera optimized program. This is
expressed as a percentage of the original instruction count
(shown in Table 2). We also report the fraction of the original
instructions that were mapped to RFUOPs ("Red." column). The
remaining eight columns provide a per instruction type
breakdown of the mapped instructions. Shown is the percentage
of instructions of each type in the original program ("Orig."
columns) and the portion of this percentage ("Opt." columns)
that was mapped to RFUOPs in the Chimaera optimized
program. For example, for adpcmenc, 34% of all instructions
was mapped to RFUOPs resulting in a reduction of 19% in
dynamic instruction count. The original program had 27%
branches and 37% of them (i.e., 9.9% of all instructions) was
mapped to RFUOPs. We can observe that a significant fraction
of instructions is mapped to RFUOPs (22% on the average). The
actual percentage varies from as little as 8% to as much as 58%.
More importantly, a significant fraction of branches is
eliminated (18% on the average). Some of these branches foil
the GSHARE predictor. Also, relatively large fractions of shift
operations are mapped to RFUOPs as compared to other
instruction types. 

We next take a closer look at the computations mapped to
RFUOPs. We measure their distribution in terms of the number
of original instructions they replace and of the height of the
original dataflow graph (i.e., critical path) they implement.
These measurements are shown in Table 6 and Table 7
respectively. All measurements are weighted by the dynamic
execution count of each RFUOP. Focusing on Table 6 we
observe that with the exception of mpegenc, at least half and up

Table 5: Global Instruction Count Statistics. 

Bench IC Red. Branch Add/Sub Logic Shift

Opt. Or ig.Opt.Or ig.Opt.Or ig.Opt.Or ig.Opt.

Adpcmenc 81% 34% 27% 37% 41% 31% 10% 46% 15% 46%

Adpcmdec 53% 58% 30% 59% 29% 57% 18% 77% 14% 72%

Mpegenc 90% 12% 17% 13% 47% 19% 0% 0% 3% 31%

G721enc 94% 8% 22% 4% 41% 5% 3% 32% 12% 35%

G721dec 92% 9% 23% 5% 41% 5% 3% 32% 11% 41%

Pegwitkey 85% 22% 15% 16% 37% 33% 13% 3% 11% 67%

Pegwitenc 85% 22% 15% 16% 37% 33% 12% 2% 10% 67%

Pegwitdec 85% 22% 15% 16% 37% 33% 13% 3% 11% 67%

Honeyenc 83% 28% 13% 18% 51% 36% 1% 0% 9% 88%

Honeydec 88% 21% 13% 0% 47% 27% 0% 51% 10% 82%

Average 84% 22% 12% 18% 41% 28% 7% 25% 10% 60%
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to 81% of all executed RFUOPs replace two instructions. These
usually correspond to 3−input/1−output operations of the form
"dest=src1 op src2 op src3" (e.g., y=a+b>>2). RFUOPs that
replace three original instructions are also quite common.  These
are either 4−input/1−output ALU−type operations (e.g.,
y=a+b+c>>2), or statements including hammock−like control−
flow behavior (e.g.,"if (x>y) y=3"). In some cases, we find
RFUOPs that replaced six original instructions. In most cases
these correspond to two chained branch sequences. In two
extreme cases, our compiler has been able to generate RFUOPs
that replace as many as 17 instructions. These RFUOP
operations comprise multiple branch statements and a series of
operations that result in multiple−input/single−output
statements. 

The critical path measurements shown in Table 7 provide
additional insight on the computations mapped to RFUOPs.
Given enough resources, a typical out−of−order processor would
be limited primarily by the computation’s critical path. Most
RFUOPs have a critical path of only 1 to 2 equivalent original
instructions. This includes those RFUOPs that replace two
original instructions (the critical path is 1 when the first
instruction is a branch, or is 2 otherwise). It also includes 8% of
other RFUOPs that map more than two original instructions.
About 87% of all RFUOPs have a critical path of 4 equivalent
instructions or less. Also, the RFUOPs in adpcmdec and
mpegenc that map 16 and 17 original instructions respectively,
demonstrate significantly shorter critical paths of 8 and 6

instructions respectively. (Note that some small differences
between tables 5 and 6 are the result of rounding errors.)

For better understanding, we take a closer look at the internal
composition of individual RFUOPS. For clarity, we restrict our
attention to three applications: mpegenc, adpcmenc and
adpcmdec. Figure 5 shows these measurements. We chose these
benchmarks as they contain a small number of RFUOPs. One
bar per RFUOP is shown (X−axis). Each bar is divided into sub−
bars (Y−axis) representing the per instruction type breakdown of
the original instructions. We split instructions into those that do
addition/subtraction, bit logic operations, shifts, branches and
moves. All RFUOPs are included in this graph. The actual
instruction count per type is also shown (numbers within the
sub−bars). It can be seen that the Chimaera compiler is capable
of mapping a variety of computations. While
addition/subtraction and shift operations are quite common,
other types of operations are also mapped. For example, in
mpegenc, a computation comprising 12 additions/subtractions
and 4 branches has been mapped into a single RFUOP. In
adpcmdec, op9 computes the equivalent of 4 branches, 3 shifts,
5 logic and 5 add/sub instructions. 

Finally, we report statistics on the number of transistor levels
used when RFUOPs are mapped into actual RA configurations.
For the purposes of this experiment, we hand−mapped all
RFUOPs. In the current RA implementation, add/sub operations
are relatively slow requiring 18 transistor levels. Other
operations are much more efficient requiring about 4 transistor

Table 6: RFUOP distribution in terms of original instruction
count. Range shown is 1 to 17 instructions (columns ommitted
have 0% in all rows).

1 2 3 4 5 6 7 ... 16 17
adpcmenc 0% 60% 27% 0% 0% 13% 0% 0% 0% 0%
adpcmdec 0% 50% 0% 0% 0% 25% 0% 0% 0% 25%
 mpegenc 0% 0% 0% 32% 0% 31% 0% 0% 37% 0%
 g721enc 0% 52% 0% 16% 0% 32% 0% 0% 0% 0%
 g721dec 0% 55% 0% 15% 0% 30% 0% 0% 0% 0%

 pegwitkey 0% 57% 20% 0% 4% 0% 20% 0% 0% 0%
 pegwitenc 0% 55% 21% 0% 2% 0% 21% 0% 0% 0%
 pegwitdec 0% 57% 20% 0% 4% 0% 20% 0% 0% 0%
 honeyenc 0% 70% 30% 0% 0% 0% 0% 0% 0% 0%
 honeydec 0% 58% 33% 9% 0% 0% 0% 0% 0% 0%

Average 0% 51% 15% 7% 1% 13% 6% 0% 4% 3%
Table 7: RFUOP distribution in terms of the critical path of the
original dataflow graph. Range shown is 1 to 8 instructions.

1 2 3 4 5 6 7 8
 adpcmenc 39% 47% 0% 13% 0% 0% 0% 0%
 adpcmdec 0% 50% 0% 25% 0% 0% 0% 25%
 mpegenc 0% 0% 0% 32% 0% 69% 0% 0%
 g721enc 0% 68% 0% 16% 0% 16% 0% 0%
 g721dec 0% 70% 0% 15% 0% 15% 0% 0%

 pegwitkey 0% 57% 24% 20% 0% 0% 0% 0%
 pegwitenc 0% 57% 23% 21% 0% 0% 0% 0%
 pegwitdec 0% 57% 23% 20% 0% 0% 0% 0%
 honeyenc 0% 83% 17% 0% 0% 0% 0% 0%
 honeydec 0% 58% 36% 6% 0% 0% 0% 0%

Average 4% 55% 12% 17% 0% 10% 0% 3%

Figure 5: RFUOP instruction type composition. Left: mpegenc. Right: adpcmenc (RFUOPs 1 through 7) and adpcmdec (RFUOPs 8
through 11).Instruction types shown are addition/subtraction, logical operations, shifts, branches and moves.
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levels. Furthermore, it is possible to collapse several original
instructions in much more efficient transistor level
implementations. For example, an "add−shift" operation
requires only 20 transistor levels. Table 8 reports RFUOP
transistor level statistics for all benchmarks. For clarity, we use
aggregate metrics. We report the average, minimum and
maximum number of transistor levels per RFUOP per
benchmark (three rightmost columns). The variation on the
average number of levels is relatively large. The most complex
operations require as much as 90 transistor levels, while the
most simple require only 7. While these number may seem
discouraging, it is important to also pay attention to the original
instruction sequence they replace. Accordingly, we report the
average, minimum and maximum number of transistor levels
per RFUOP amortized over the critical path of the original
instruction sequence replaced by the RFUOP. From this
perspective and in the worst case, only 20 transistor levels are
required per level of the original dataflow graph. While we
hand−optimized the configurations shown we expect that it
should be possible to generate comparable or better results using
an automated method. 

5.3 Working Set of RFUOPs
Before we measure the performance impact of various models of
the Chimaera architecture, we provide measurements on the
working set of RFUOPs. This is important since execution is
stalled during configuration loading. Having a large working set
may adversely impact performance as it would result in
thrashing in the configuration array (RA) requiring frequent
accesses to memory. We measured both the working set of
RFUOPs and the amount of storage required to avoid excessive
accesses to memory for configuration loading. Figure 6 reports
working set measurements. Shown is the miss rate of a cache
that contains the last n most recently encountered RFUOPs. We
vary n from 2 to 16. For most programs, maintaining a record of
the last 4 most recent RFUOPs results in virtually no misses.
Even in the worst case, 8 entries are sufficient. In Figure 7, we
measure the miss rate assuming that each RFUOP requires K
configuration rows (each of 1674 bits) where K is the number of
original instructions it replaces. This is a pessimistic assumption
as in an actual implementation a single row could be used to
map several instructions. We simulated caches of various sizes.
The range shown is 4 to 32 configuration rows (.8K to 6.7K
bytes). For most programs, just 16 rows are sufficient. In few

cases, 32 rows are required. The prototype RA is capable of
holding up to 32 rows simultaneously.

The results of this experiment indicate that the working set of
RFUOPs is relatively small and that the amount of configuration
storage in the RFU is sufficient enough to prevent thrashing.

5.4 Performance Measurements
In this section, we study how performance varies when
Chimaera is introduced into an aggressive, dynamically
scheduled superscalar processor. We first consider a 4−way base
configuration for both the original−instruction−based timing
models and the transistor−level−based models. Then we
consider an 8−way base configuration.

Figure 8 shows how performance varies over the 4−way
configuration that does not include an RFU. Note that when the
RFU is included, overall issue, write−back and commit
bandwidth are each still limited at 4 instructions per cycle
including RFUOPs. Furthermore, only a single instance of an
RFUOP can be active in the RFU at any given point in time.

It can be seen from Figure 8, part (a) that with the 2C model,
Chimaera offers speedups of about 11% on the average over the
4−way base configuration. In two cases, speedups exceed 30%.
On the other hand, we observe slowdowns in 3 benchmarks.
With the C model, performance improvements almost double
(about 20% on the average). Note that for adpcmdec the speedup
under the C model is 155%. With the 3C model, performance

Benchmark Transistor Levels /
Critical Path Inst.

Transistor Levels/
RFUOP

Avg. Min Max Avg. Min Max

adpcmenc 13.9 4 22 21.2 7 38

adpcmdec 10.4 10 12 43.5 20 96

mpegenc 11.8 10 15 64.3 40 90

g721enc 8.7 5 15 26.6 10 55

g721dec 8.5 5 15 25.5 10 55

pegwitkey 10.5 8 19 27.8 20 40

pegwitenc 10.6 8 19 28.3 20 40

pegwitdec 10.5 8 19 27.8 20 40

honeyenc 12.8 10 20 27.9 20 54

honeydec 12 10 20 29.9 19 50

Table 8: RFUOP transistor level statistics. 

Figure 6:RFUOP working set. Cache size is the number of
rfuops that can coexist in the RFU.
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the number of rows in the RFU.

4 8 16 32

0

0.2

0.4

0.6

0.8

1
adpcm.enc

adpcm.dec

mpeg.enc

g721.enc

g721.dec

pegwit.key

pegwit.enc

pegwit.dec

honey.enc

honey.dec

cache size

m
is

s 
ra

te

Alan Berenbaum
232



improves only for one benchmark. As expected the 1−cycle
model shows radical performance improvements for those
benchmarks having RFUOPs that replaced several original
instructions. Notably, even under the N model performance
improves over all benchmarks. In this case, it is the decreased
branches and reduced resource contention that primarily impact
performance. For most programs studied the branches mapped
into RFUOPs foil the GSHARE predictor. The results of this
experiment suggest that in a 4−way superscalar processor and
for most of the programs studied, Chimaera can offer
performance improvements even if RFUOP latencies are in the
order of 2C.

Figure 8, part (b) shows performance variation with the
transistor−level−based models. Notably, Chimaera performs
well even in the context of highly−aggressive assumptions about
the base processor cycle. With P12_1 which is the most
conservative model, we observe an improvement of 21% on the
average. As shown by the P12_0 model, performance can
improve by 26% on the average in the absence of additional
communication overheads. As expected, the other two models,
P24_0 and P24_1, show even greater improvements, 31% in
P24_0 and 29% in P24_1. Performance in these models is close
to the upper bound as measured with the 1−cycle model in part
(a) of Figure 8.

Figure 9 reports performance variations over the 8−way base
configuration. In part (a) we report experiments with the
original−instruction−based timing models, while in part (b) we
report performance with the transistor−level timing models.
With the original−instruction−based models performance
improves only under the C, 1 and 2 and N models. Moreover,
the relative improvements are smaller as compared to the 4−way
processor. Under the 2C model slowdowns of as much as 25%
are observed. These results suggest that in an 8−way host
processor RFUOP latencies better than the 2C model are

required to improve performance. Two factors explain the
relatively lower performance impact of Chimaera over the 8−
way base processor configuration as compared to the 4−way
configuration. First, we limit RFUOP execution into a single
instance of each RFUOP at any given time (different RFUOPs
can be active simultaneously). This limits the amount of inter−
RFUOP parallelism that can be exploited. This impacts
performance more in the 8−way configuration than it does in the
4−way configuration as the former has a twice as large
instruction window than the latter. As a result, the inability to
exploit inter−RFUOP parallelism for instances of the same
RFUOP. Second, RFUOPs map several original instructions
each of which would consume an issue slot in the base
processor. As a result, a single RFUOP effectively allows us to
issue its corresponding original instructions using a single issue
slot. This can greatly improve performance when issue resources
are limited (4−way vs. 8−way configuration).

Part (b) of Figure 9 reports performance variations with the
transistor−level−based models. As it was the case for the 4−way
configuration, performance improves significantly even under
the most pessimistic model (P12_1). However, the performance
differences among models are greater than they were under the
4−way configuration.

A strong correlation exists between performance and the
fraction of branches replaced by RFUOPs. As shown in Table 5,
honeydec, g721enc, and g721dec demonstrate the lowest
fractions of reduced branches and the lowest performance
improvements. In comparison, performance improves the most
in adpcmdec which also has the largest amount of removed
branches.

The results of this section suggest that even under relatively
pessimistic assumptions about RFU latency Chimaera results in
significant performance improvements over both a 4−way and
an 8−way highly−aggressive superscalar processors.

Figure 8: Relative performance over the 4−way base configuration. (a) Original−instruction−based timing models (The adpcm.dec
bars for 1, 2 and C are truncated. The measurements are 3.52, 2.51, and 2.55). (b) Transistor−level−based timing models (The
adpcm.dec bars are truncated. The measurements are 2.88, 2.97, 2.56, 2.31 from left to right). 
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6. Summary
We have described Chimaera, a micro−architecture that
integrates a reconfigurable functional unit into the pipeline of an
aggressive, dynamically−scheduled superscalar processor. We
also described the Chimaera C compiler that automatically
generates binaries for RFU execution. The Chimaera micro−
architecture is capable of mapping a sequence of instructions
into a single RFU operation provided that the aggregate
operation reads up to 9 input registers and generates a single
register output. Chimaera is also capable of eliminating control
flow instructions in a way similar to that possible with
predicated execution. Finally, Chimaera is capable of a more
general sub−word data−parallel model than that offered by
current, multimedia−oriented ISA extensions.

Using a set of multimedia and communication applications we
have found the even with simple optimizations, the Chimaera C
compiler is able to map 22% of all instructions on the average.
A variety of computations were mapped into RFU operations,
from as simple as add/sub−shift pairs to operations of more than
10 instructions including several branch statements. 

We also studied the performance of Chimaera under a variety of
configurations. We studied Chimaera’s performance under a
number of timing models, ranging from pessimistic to
optimistic. Our experiments demonstrate that for a 4−way out−
of−order superscalar processor performance our approach results
in average performance improvements of 21% under the most
pessimistic transistor−level−based timing model (P12_1). The
actual performance variation range was −5% to 131%. For an 8−
way superscalar processor we observed speedups of 11% on the
average. The actual performance variation range was −19% to
104%. With a different timing model (P24_1) that matches
existing high−performance processor designs, Chimaera

improved performance by 28% and 25% on the average over the
4−way and 8−way base configurations respectively.
Performance varied from 5% to 197% and from −5% to 235%
respectively.

Our results demonstrate the potential of the Chimaera approach,
even under very pessimistic RFU latency assumptions. It is
encouraging that the performance improvements were obtained
using automatic compilation. While similar or higher
performance improvements have been observed in multimedia
applications using specialized instruction set extensions, these
were in most cases the result of careful hand optimizations.  
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