Dynamic Reallocation of Functional Units in
Superscalar Processors

Marc Epalza', Paolo Ienne?, and Daniel Mlynek!

! Laboratoire de Traitement des Signaux 3,
2 Laboratoire d’Architecture des Processeurs,
Swiss Institute of Technology Lausanne (EPFL), 1015 Ecublens, Switzerland
{marc.epalza, paolo.ienne, daniel.mlynek}@epfl.ch

Abstract. In the context of general-purpose processing, an increasing
number of diverse functional units are added to cover a wide spectrum of
applications. However, it is still possible to design custom logic adapted
to a particular application that will perform far better than a processor.
In an attempt to give it some adaptability, adding some reconfigurability
can help improve performance. We propose to extend the possibilities of
complex multifunction units by dynamically reallocating existing com-
plex functional units as multiple simpler units. The fact that more than
one simple unit is involved in the ”reconfiguration” process implies that
the decision is more global and needs to be taken for a longer period
of time. We show that in typical superscalar architectures, there are no
major impediments to implementing such a decision scheme, and that
on a specific reallocation opportunity we can achieve speedups of up to
56% over a mainstream superscalar processor and practically no losses.

1 Introduction

In general purpose processors, the quest for ever higher performance leads to
many trade-offs, since one aims to achieve the best average performance on a
variety of tasks essentially unknown to the designer. Many methods to extract
even more parallelism, such as speculative execution or Very Long Instruction
Word (VLIW) compiler technologies are complex and achieve diminishing re-
turns, since the resources available to the processor are fixed. Attempts to make
the processor adaptable to the program it is currently executing, through the
use of reconfigurable logic, have provided mixed results. We propose to intro-
duce some adaptability without using slow reconfigurable logic. To this end, we
focus on the large multi-function units present in a superscalar processor. As
an example, we expose a modification of a superscalar processor’s floating point
functional units (FPU) to allow some adaptation to the current workload.

Section [2 will lay out the constraints of the field and existing methods to
achieve high performance. Next, section [3] will present our proposal and its im-
pact on processor design. Our test methodology and reference processors will be
exposed in section [, with simulation results shown in section Bl Section [A will
bring our conclusions, the limitations of our approach, and our future directions
of study.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 185-[T38] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

186 M. Epalza, P. lenne, and D. Mlynek

2 Background and Prior Art

2.1 Parallelism

The way to higher performance in general purpose processors is through forms
of parallelism, especially by trying to execute as many instructions as possible
at the same time. The theoretical limits in the parallelism offered by different
programs are far higher than those achieved in reality by current processors,
for a variety of reasons. In any case, the available hardware resources are fixed
by the processor’s designer, and cannot be tailored to a particular application.
They are chosen to get the best average performance. Superscalar processors,
executing many instructions out of order every cycle, extract as much parallelism
as possible during the execution of a program. This leads to complex designs,
but these optimizations don’t require changes to the software. In an attempt
to soften the restrictions of fixed hardware resources, configurable hardware has
been examined.

2.2 Reconfigurable Functional Units

Given the limitations of a fixed set of hardware resources, much research has
focused on adding some reconfigurability to a general-purpose system, usually
based on FPGA technology. FPGAs are most efficient for code with simple
control and large data parallelism (e.g., [2]).

One can distinguish three different approaches, each bringing closer integra-
tion with the processor, and thus more generality, at the expense of performance.
The first and second couple an FPGA and a normal processor, and distribute
the computing tasks according to what each can do best, the difference being
whether to integrate the FPGA onto the processor chip or not. There is little
automation possible, and selection and coding for the FPGA must be done by
hand, including the needed communication and synchronization with the pro-
cessor. With well chosen applications, the gains in performance can be of several
orders of magnitude [I5]. In a single-chip solution, some automation is possi-
ble, usually with a smaller increase in performance than if optimizations are
performed by hand (e.g., [13]).

The last, most tightly coupled solution is to define the configurable logic
as simply an extra functional unit (FU) of the processor. This reconfigurable
functional unit can hold several instructions or sequences of instructions, that
can be provided by a special compiler, and loaded by the processor when needed.
Attempts to automate the process exist (e.g., [1], [16]), with gains similar to the
second solution above (e.g., [5]). In each of these cases, the approach is to couple
an existing FPGA-style block with a processor, in a more or less tightly coupled
way.

We propose to consider configuration possibilities as an issue in the design
of the processor’s functional units, instead of adding a block of existing fully
reconfigurable logic (such as FPGA technology) and trying to have the two
cooperate. This implies a reduction in the configurability available, albeit with
a significant gain in speed, which we hope to leverage.

Dynamic Reallocation of Functional Units in Superscalar Processors 187

2.3 Binary Compatibility

The issue of binary compatibility, ensuring that all code written for previous
versions of a processor family will work on the newest model, is a complex one.
However, it limits the innovation that can be implemented in the processor,
since no completely novel approach may be used. As a solution to this problem,
dynamic binary translation has been proposed. It aims to transform code for
one architecture into another in real-time during the execution of the program.
Several research projects exist [14], with one commercial implementation [g].

Our aim is to increase performance while avoiding code changes or having a
major impact on timing. The lack of code changes allows our improvements to
apply to all existing code and the re-use of all compiler achievements. Preserving
the general timing will avoid breaking or severely limiting the performance of
existing programs not suited to our modifications.

Integer Switch | | Floating -Point
Reservation [ZDecisio Reservation
Stations Stations

1

ALU

ALU

[I
=——
[o

——————————

ALU

,,,,,,,,,,,,,,

! \
! l
! |
! I
Multiply/ | ‘
Divide
Significands ‘<—>‘ Wires
! \
! I
Normalize, ‘ | [XALUJ [xALU XALU |,
|

Round, Pm.k |

,,,,,,,,,,,,,,,,,,,,,,,

a) FPU configuration b) xALU configuration

Fig. 1. Paths between reservation stations and functional units (top), and realloca-
tion possibilities (bottom). Each FPU can be reallocated as a number of extra ALUs
(zALUs). FPU operations have 5 stages, thus the FPU must be idle for 5 cycles before
reallocation is possible. Likewise, the zALUs have 2 stages, and must all be idle for 2
cycles at the same time to allow reallocation.

3 Proposed Modification

Studies on the ideal mix and functionality of functional units in a superscalar
processor have been performed [7]. These studies show that good gains can be ob-
tained by increasing the number of identical functional units, as well as the types
of instructions these units can execute. We are interested in looking for ways to
reconfigure expensive functional units to perform different operations. Given the

188

M. Epalza, P. lenne, and D. Mlynek

partial products

CSA Tree

partial products

CSA Tree

v Vi
Unpack ml
vy 1 [csa] [csa] |[cpal[cpa][cpa]] [csa|
Exponent ’ Significand mz " ST
P Mul/Div % CSA Jl'r 61
M A & 81 \77_‘ <31
ExponentH N?{r:)?:ﬁéze ‘ ~
1 s 1 CSA
Pack ‘ CA

Fig. 2. Left: Structure of a floating point multiply/divide unit, with assumed cycle
counts. Center and Right: Example of a 64 bit multiplier partial product reduction tree.
Center: Original Wallace tree structure (total delay 147). Right: Proposed modification
(total delay 157). CSAs have a delay of 17, CPAs have a delay of about 57. For clarity,
the multiplexers from the Register file to the CPAs for the zALU configuration are not
shown.

speed disadvantage of fully programmable units, which are 5 to 10 times slower
than a dedicated custom logic in the same technology, we restrict ourselves to
very limited changes, while maintaining speeds close to non-configurable logic.

3.1 Basic Concept

Multifunction units, such as the FPUs in the Intel Itanium 2 processor, can
execute one of many different instructions each cycle. As shown in figure [T}
we propose to reallocate an FPU, with a latency of 5 (figure [Th) as several
extra ALUs (zALUs) with a latency of 2 (figure [Ib). These extra ALUs are
assumed to perform all the operations normal Arithmetic Functional Units do.
Our approach differs from multifunction units since, due to these latencies, the
reconfiguration decision cannot be taken on a cycle-by-cycle basis, but with a
view to the next several dozen cycles. This longer view is necessary to offset the
idle time before reallocation, as we have to wait for the entire functional unit to
be idle before reallocating it. We trade a small decrease in speed to obtain some
configurability, with the hope that adapting to applications will offset the slightly
slower configurable functional units to offer a net gain in performance. We focus
on a processor’s floating point unit, since it is fairly large, and can often be
idle during a program’s execution, if the current application uses mostly integer
code. Simply adding extra ALUs would further increase power consumption and
area, with little impact on the results (section [5).

Dynamic Reallocation of Functional Units in Superscalar Processors 189

3.2 Standard Arithmetic Units

Current fast multipliers for fixed point numbers can be built from a tree of Carry-
Save Adders (CSA) that adds all the partial products into two words, with a final
Carry-Propagate Adder (CPA) for the last addition [10]. The exact structure of
the tree may vary to achieve better regularity, essential for good integration. A
division unit can have a similar structure, if a convergence algorithm is used.
This would lead to the common implementation of a Mul/Div unit [11], with
the tree structure qualitatively as in figure 2] (center). Each CSA or CPA block
might need an inverter to allow subtraction. The CSA tree has [log;,5(64)] =9
levels.

A floating-point Mul/Div unit is essentially a fixed-point Mul/Div unit with
some extra logic to unpack the operands, perform Booth recoding if it is used,
normalize the result and re-pack it into floating-point notation, as shown in figure
(left). The presence of a full CPA adder allows the re-use of the unpack and
pack logic to include all floating point operations in the unit. It is also possible
to use the floating point unit for integer multiplication and division, as in the
Intel Itanium 2 processor [9].

3.3 Dynamic Functional Units

We propose to use the adders in an FPU as a number of AL Us, with character-
istics similar to normal ALUs. As a CSA cannot be used to perform a complete
addition, several CSAs in the tree could be replaced by CPA adders as in fig-
ure [2] (right) with only a minimal impact on the overall critical path, area and
power consumption. This figure shows the proposed modifications to the reduc-
tion tree, which affect only the steering of the data, not the logic performed
on it. The CPAs directly receive some of the partial products while the other
partial products go through the CSA tree to allow time for the far slower CPAs
to finish execution, resulting in only a small extra delay due to the unbalancing
of the tree. This requires some extra logic: to handle logic operations other than
add/subtract, to bring the operands for the extra instructions that will be exe-
cuted, to bypass the floating point logic, and to switch between the two different
modes of execution.

3.4 Effects on Functional Unit Latencies

Our reference for instruction latencies is the Intel Itanium 2 processor, one of the
fastest (and certainly the largest) existing processor [17]. This processor has a
latency of 1 for all ALU operations, and a latency of 4 for all FP operations and
Integer Mul/Div operations. These latencies are considered here representative
of current 64-bit processors, and the functional units are fully pipelined.

In deep sub-micron technology, such as 0.13um, wires account for about
2/3 of the delays, and the differences between 0.13um and 0.09um are not so
important in this regard. The increase in wiring to reach the xAL Us is estimated
at about double that needed for normal ALUs. Thus, if a normal ALU has a

190 M. Epalza, P. lenne, and D. Mlynek

latency of 1 cycle, split as 1/3 gates and 2/3 wires, doubling the wires gives a
zALU latency of 5/3. Taking the multiplexers to select the adders in the FPU
into account, a conservative estimate for the latency of all extra ALU units is to
double the latency of normal ALUs, for a latency of 2. As confirming this timing
would require designing the entire functional core of a superscalar processor, a
complex task beyond our means, simulations with a very conservative latency
of 3, where about 89% of the delay is in the wires, have also been performed.
Additionally, some of the bypass paths necessary to keep the pipeline as full as
possible, and counted in the above calculations, are likely to already be present
in the multiplier’s tree linking the zALUs together. This also means that the
overhead is less than that of simply adding extra ALUs to the processor.

The latency of the entire FPU being 4, we consider that the unpack stage
takes one cycle, the multiplier tree takes 2 cycles, and the normalization and
pack take the last cycle (figure [2 left). The replacement of some of the CSA
adders by CPA adders will increase the total delay of the multiplier tree. From
[10], considering that a CSA has a delay of 17, a delay of 57 for a 64-bit CPA
can be derived. The total delay for a 64-bit CSA tree with 9 levels (see section
B2) and the final CPA, is thus 97 + 57 = 147 (figure @I center). We assume
this delay represents 2 cycles (figure 2left), as both real processor data [9] and
arithmetic considerations [T1] suggest. As shown in figure 2 (right), implementing
our modifications on the FPU to embed 3 CPAs in the compressor tree would
increase its delay to 87 + 27 + 57 = 157 plus the delay a multiplexer in front of
each CPA (figure[2 right). To be on the conservative side, and since functional
unit latencies must be integral, we have assumed the total delay of the modified
tree to be 217, equivalent to 3 cycles, an increase of 50%, or one cycle, for a
total delay of 5 cycles in the functional unit. This adds a margin of 67, almost
40%, that is, many layers of logic, to the timing of the FPUs CSA tree. In any
case, the partial products reduction tree is a logarithmic tree which can be easily
unbalanced as needed to hide the delay of the CPAs, and so the inaccuracy due
to the delays of the multiplexors and the bypass paths should not be significant
overall.

Since the reconfiguration is achieved by switching the inputs of a few multi-
plexers, it takes only a single cycle, in addition to having to wait for the func-
tional units to be idle, with no changes to the pipeline except the activation of
the forwarding paths discussed above. The routing of the processor core must
be redone to take the new data paths into account, but this kind of work must
be done for newer technologies in any case. These numbers are summarized in
table[d.

3.5 Switch Decision Mechanism

Given the possibility of changing an FPU into a number of xALUs, the issue of
deciding when to perform this change, and when to change back, is posed. Since
this decision cannot be taken every cycle because it is a global decision affecting
several functional units (figure [J), an algorithm to adapt the resources to the
code running at a given moment is needed. The basis for the decision is the type

Dynamic Reallocation of Functional Units in Superscalar Processors 191

of instructions in the reservation stations. This gives a measure of the type of
instructions the processor can expect to be executing a few cycles later. In the
simplest case, the number of instructions of each type are then compared to the
number of available functional units of the same type to make a decision. A switch
is decided when the difference between the proportion of instructions of a type in
the reservation stations and the resources of that type becomes too large. In the
relatively common case that an instruction type should appear very infrequently,
such as an integer program with very few multiplications, the algorithm above
will not trigger a switch, since the threshold is not reached by a single instruction.
In this case, we must detect that an instruction cannot be executed due to
the absence of the correct resource type, and force a switch, regardless of the
contents of the reservation stations. In all cases, a switch decision must wait
until the functional unit(s) it wants to reallocate are completely idle, in which
case it takes only a single cycle. It would be possible to switch while the FPU is
still finishing the last calculation, during the normalization/pack stage, but this
would greatly increase the complexity of the control path without a great effect
on performance, through the pipelining of the switch logic and extra complexity
in the pipeline.

3.6 Additional Considerations

The act of switching one or more FPUs into a number of £ALUs increases the
pressure on the memory system, as well as providing the need for extra issue,
dispatch and commit width. Though the memory bandwidth remains the same,
a higher number of Load/Store units are required to avoid stalling the processor
due to many memory requests. In our simulations, 4 such units (as in the Itanium
2) were a good balance between performance and complexity. The widest issue
rate in current processors is 8 instructions per cycle [I7]. A larger issue rate
increased the gains of dynamic reconfiguration, but only slightly. Thus, the issue
and dispatch widths were kept at 8. The commit width need not be as large as
the issue/dispatch width, since the average number of instructions committed
per cycle is lower than the maximum. In our simulations, the highest average IPC
was slightly below 4 (vortez), leading to a commit width of 8 to avoid limiting
performance, as the simulator used requires it to be a power of 2, although a
value of 4 could be considered.

4 Experimental Methodology

All the results presented in section [H were obtained through the use of the
Simplescalar tool set [3]. The models used for the hardware are detailed in section
2. On the software side, the SPEC CPU2000 [6] benchmarks were used for all
tests.

192

M. Epalza, P. lenne, and D. Mlynek

Table 1. Processor model resources. The baseline mainstream and baseline top pro-
cessors were compared to their dynamic counterparts in all simulations, with original
mainstream and original top shown as references. supertop is equivalent to dynamic
top with 4 additional ALUs and no reconfiguration.

Model #ALUs |#FPUs (latency) |#Load/Store |#xALUs |issue-dispatch-
(latency) units per FPU|commit widths
(latency)
original |3 (1) |2 (4) 2 - 1-4-4
mainstream
original top (6 (1) 2 (4) 4 - 8-8-8
baseline 3 (1) |2 (4) 1 - 8-8-8
mainstream
baseline top |6 (1) 2 (4) 5 - 12-12-8
dynamic 3 (1) 2 (5) 4 4 (2) 8-8-8
mainstream
dynamic top|6 (1) 2 (5) 5 4 (2) 12-12-8
supertop 10(1) 2 (5) 5 - 12-12-8
4
35
3
25
g 2
1.5
1
0.5
0 i
S 5880235 E8F2TIER233T5LE8EEITY
N > o E T 2 0 £ 5 = s = g 0 2 T 5 C ®w & &
[S) S s Emgg~§mg’%gg §§g3§§m
Benchmark

Fig. 3. Simulation results for the SPEC benchmarks for the baseline mainstream (light)
and dynamic mainstream (dark) processors. There are large variations in the overall
IPC, with some significant gains by the dynamic model.

Dynamic Reallocation of Functional Units in Superscalar Processors 193

60

50

40

30

20

Speedup (%)

-10 T
o 5 Q0 > 5 ©C X QO X = 3 T £t 0O Qo u X ‘H
g 2 0 2 &£ 2 50 @ O Y98 3 EZR 5 3 S 2 3 £ © 3 S 2
> OE® ? o FE OoE R =3 = O o B T 5 O ® 8 &

o 5 ® £ c 8223 g GcET > 8§ E S g &

Q 5 > S o] o g © - &= X

Q s o = 7]

Benchmark

Fig. 4. Speedups between the baseline mainstream and the dynamic mainstream mod-
els. The integer benchmarks show universal gains, whereas the FP benchmark results
are more varied. Except for siztrack, all negative speedups are very small, less than 1%
slower than the baseline.

4.1 Modifications to Simplescalar

The most accurate simulator in the Simplescalar tool set, sim-outorder, was
modified so that a number of FPUs can be turned into several zALUs. The
switch decision algorithm was also added to the simulator’s main loop, to choose
whether and how to change the allocation of resources during program execution.

4.2 Reference Processors and Models

Two different references, loosely inspired from mainstream and top server pro-
cessors available today, and considered representative of the state of the art in
general-purpose processors, were used:

Our mainstream reference is similar to the IBM Power4 processor (a single
core), and is close to the average resource configuration of current processors.
Each core is a 4-way superscalar processor, and has 2 ALUs, 2 load/store units,
one branch unit and 2 FPUs.

Our top reference is loosely based on the Intel Itanium 2 processor, one of the
fastest server processors available today, as measured by SPEC benchmarks. It
has 2 ALUs, 4 load/store units that can also perform ALU operations, 3 branch
units, and 2 floating point units that also take care of integer multiplication.
Although it is a VLIW processor, its resources represent well the most aggressive
configuration achievable nowadays.

194 M. Epalza, P. lenne, and D. Mlynek

For a fair comparison, both reference models are given the same memory
access bandwidth and ports as our proposed model (4 or 5 load/store units and
a 128-bit wide access to memory), as well as the same issue/dispatch/commit
widths, giving us our baseline mainstream and baseline top models. Although
these models are somewhat unbalanced, not increasing the number of load/store
units would cripple the dynamic models, which are obtained by increasing the
FPU latency as explained in section B4land adding dynamic reallocation. Super-
top is defined as a fully static top, with 4 additional AL Us and no reconfiguration,
and is used to show the small difference in performance compared to the dynamic
top. These characteristics are summarized in table [II

4.3 SPEC CPU 2000 Benchmarks

All our tests considered the entire set of 26 benchmarks comprising the SPEC
CPU2000 suite. The binaries are provided for the DEC Alpha [4] Instruction Set
Architecture (ISA) on the Simplescalar WWW site [3], and have been compiled
using the ’peak’ configuration. The data sets chosen are the reference sets from
the SPEC suite. given the length of the full simulations, early Simpoints [12]
were used to provide statistically significant results for the mainstream model,
detailed in figures Bl and Bl Due to time constraints, and since they are only
intended to show the limits of reallocation, the top and supertop models were
simulated skipping a smaller number of instructions than Simpoint suggests.
Although the individual results may vary, the average over the 26 benchmarks
is similar to that obtained using early simpoints, and sufficient to show a trend
of diminishing returns.

5 Results

5.1 Performance Results

Figure [3 shows the results of our simulations for the mainstream model, using
the configurations in table [II lines 3 and 5. The speedups when using perfect
memories, not shown, show little difference with those presented here, demon-
strating that reasonable memory latencies have little effect on the gains made
by dynamic reallocation. The best performing benchmark was vortex, with a
gain of 56%, since it uses many independent ALU operations and very few FP
instructions, thus being able to make good use of the AL Us, and the worst was
siztrack, with a loss of 3.8%, which is mostly composed of FP add and multiply,
and is thus strongly affected by the increase in FPU latency. The average gain for
the integer benchmarks was 19%, and 3.5% for the floating-point benchmarks.
The overall average for the entire suite was a gain of a little more than 10%. For
clarity, the corresponding speedups for the entire set of benchmarks are shown
in figure @l There is a systematic gain, only seldom insignificant, and the rare
losses in heavily FP-oriented benchmarks are rather small, with the exception
of sixtrack.

Dynamic Reallocation of Functional Units in Superscalar Processors

60106

26608 50408

40406

36406

Structural Stalls

20406

16406

0 0
AU Imdl Fadd Fmd LdSt ALY

Mcf

Instructon Type

120408

Imu Fadd Fmul Lost

Instruction Type

1.20408

16408

1008

86407

8e:07

60407

60:07

a
&

Structural Stalls

de07 40407

20407 20407

0
AU Imul Fadd Fmul LdSt
Instructon Type

o
Wupwise

Instructon Type

AU Imul Fadd Fmul LSt

instructions committed

120

195

100

ALU ——
FPU e

21000

22000

*
23000 24000

Cycles

25000 26000 27000

Fig. 5. Left: Structural stalls for mcf (top) and wupwise (bottom). The left side is the
mainstream baseline case, the right side is with dynamic reallocation. Mcf is limited
by ALU instructions, and shows a large reduction in ALU stalls. Wupwise sees little
change in stalls, and thus cannot benefit from reallocation. Right: Instruction types
for galgel. As there is no region with few FP instructions and many ALU requests, the
allocation decision is to have no zALUs, resulting in lower performance.

Mcf Sixtrack
8 ALU —— % AU ——
70 FPu o 80 | FPU
60 5 701
£ 501 €
§ ol § 50 4
é 30 ‘E’ 1
2 3 30
* 20 =
20
10 10 4
025000 26020 26040 26060 250;0 2;10.5 :5.120 26140 26160 26180 26200 ¢ 0 160 260 360 460 5‘00 560 760 860 960 1000
Cycles Cycles
8 \ /\ / XALU —— 8 n XALU ——
B BES 7 BEY T
s AN o I
z. \V/) // . IH\
H £ 4
| | [4] L]
5, s, | [i
‘ A A
026000 26020 26040 26060 26080 261!:)0 26120 26140 26160 26180 26200 ° o 100 200 300 400 500 600 700 800 900 1000

Cycles

Fig. 6. Instruction types (top) and resource

Cyocles,

allocation (bottom) for mcf (left) and
siztrack (right). For mcf, as there are almost no FPU instructions, the configuration
is always to use 8 £ALUs. When an FPU instruction arrives, the FPU is switched to
execute it, and then immediately switches back. In the case of sixztrack, the alloca-
tion of the FPU’s resources adapts to the instruction types: when there are few FPU
instructions, the units will be reallocated as zALUs.

196 M. Epalza, P. lenne, and D. Mlynek

The results for the top model, described by lines 4 and 6 in table[], show a
reduction in the gains obtained, due to far less usage of the AL Us, as there are
already 6 ALUs in the processor. Again, memory latency did not significantly
affect the speedups. The average gains were 3.7% for integer benchmarks, and
1.5% for floating-point, giving a total average gain of 2.5%. For comparison, the
Supertop model gives an average gain of 3.1% versus the baseline top, at the cost
of a larger set of functional units and resources on the die. If the AL Us latency
is increased to 3, the results show a reduction in the average gain from 10% to
7%, and in the maximum gain from 56% to 35%. Thus, although this delay is
somehow critical to our gain, the benefit of our system does not fully rely on
these timing assumptions. Losses are not affected, since these benchmarks rarely
use the AL Us, if ever.

5.2 Influence of Instruction Types

The large differences in speedups for the different benchmarks can be explained
by looking at the instruction types used in these benchmarks. We shall use
three benchmarks to illustrate this point: mcf, wupwise and galgel. The follow-
ing graphs show good examples of the different behaviors reallocation produces.
However, these are not necessarily representative of the overall benchmark re-
sults. Figure Bl (left) shows the number of structural stalls—i.e., the number of
instructions of each type which had all operands ready, but couldn’t execute due
to a lack of functional unit, for the first two benchmarks with the mainstream
model. The former, mcf, is limited here almost only by ALU instructions in ad-
dition to memory accesses, and thus benefits greatly from our proposal, since
both FPUs get reallocated into many zA L Us, switching back regularly to service
the FP operations. This behavior is shown in figure [f] (left). The limitation by
the Load/Store units appears because all ALU instructions that were previously
waiting for a functional unit have been executed by one of the zALUs, and the
memory accesses that had time to execute in the baseline case now stall the
processor while waiting for the Load/Store units, which are now far less nu-
merous than the ALUs. On the other hand, wupwise uses a fairly diverse mix
of instruction types, with a heavy emphasis on floating-point add and multi-
ply/divide instructions. The switching mechanism is constantly reallocating the
functional units to try to match the instruction mix at each moment in time. In
this case, the extra ALUs available at some moments cannot compensate for the
slowdown of the FPUSs’ mul/div units and the delays in switching between the
two. To illustrate this, a short trace of the instruction types for galgel is shown
in figure [(right). The corresponding switch decision, not shown, is to never use
the 2ALUs, leading to a loss in performance due to a longer latency in the FPU.

5.3 Switching Dynamics

For the resource reallocation to work, the switch mechanism must configure the
hardware to make the best use of the configurable resources. Figure Bl (right)
shows a short trace from the sixtrack benchmark, taken after approximately

Dynamic Reallocation of Functional Units in Superscalar Processors 197

10? instructions. Figure [(top right) displays the number of instructions com-
mitted from the ALUs and the FPUs, while figure [l (bottom right) shows the
configuration of the FPU over the same period of time.

The pattern shown is one of the startup loops in the application, and repeats
regularly around the instruction count shown. At around 200 cycles, there are
more FPU instructions than ALU ones, and the switching mechanism does not
allocate any zALUs. However, at 300 cycles, the situation reverses, and one
FPU is converted into 4 zALUs. A sharp spike in ALU instructions coupled
with a sharp drop in FP instructions at 450 cycles will cause both FPUs to be
reallocated as 8 A L Us for a brief moment, before resuming FP functions. A long
period of relative stability, between 650 and 850 cycles leads to a unchanging
configuration.

6 Conclusions and Future Work

We have proposed a method to gain some hardware adaptability to the code
running on a general-purpose processor that does not sacrifice the speed of the
configurable unit or compromise binary compatibility. This technique is distinc-
tive in requiring the logic of the superscalar processor to make more global
decisions than it normally does. The conditions for the simulations have been
derived from real data measured from 0.13pm technology. The results show the
use of a dynamic FPU is quite interesting in the case of processors with a modest
number of ALUs, and that naturally the interest declines with a large number
of ALUs already in the processor. Our idea, based on giving the processor more
possibilities for parallelism, should be seen as an example of the possibilities
in superscalar processors that can be exploited by multi-cycle reallocation de-
cisions. When superscalar processors will enter the embedded System-on-Chip
world, the common use of domain-specific instructions or coprocessors for these
applications will increase the opportunities for similar forms of reconfiguration.

We intend to apply control theory to the decision mechanism, in order to
better tailor the resources to the application. Simulations on a SMT processor
are expected to produce interesting results, due to the extra parallelism exposed
by the multiple threads. We also envision to research the possibility of using soft-
ware hints in the code to guide resource reallocation. While this would maintain
backward binary compatibility, it will require a recompilation and some analysis
of the code to produce better gains. In a similar vein, it might also be possible
to apply this method to VLIW processors, in which case the resource allocation
would simply be another information generated by the compiler.

Acknowledgment. We would like to thank the anonymous reviewers for their
insightful comments.

198 M. Epalza, P. lenne, and D. Mlynek
References
1. K. Atasu, L. Pozzi, P. Ienne, Automatic Application-Specific Instruction-Set Exten-

10.

11.

12.

13.

14.

15.

16.

17.

sions under Microarchitectural Constraints, Proc. of the 40th Design Automation
Conference, June 2003.

. M. Borgatti et al., A Reconfigurable Signal Processing IC with embedded FPGA

and Multi-Port Flash Memory, Proc. of the 40th Design Automation Conference,
June 2003.

. D. Burger, T. M. Austin, The Simplescalar Tool Set, Version 2.0,

www.simplescalar.com

. J. H. Edmondson, et al., Internal organization of the Alpha 21164, a 300-MHz

64-bit quad-issue CMOS RISC microprocessor, Digital Technical Journal, 1995.

. S. Hauck, T. W. Fry, M. M. Hosler, J. P. Kao, The Chimaera Reconfigurable Func-

tional Unit, IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, 1997.

. J. L. Henning, SPEC CPU2000: Measuring CPU Performance in the New Millen-

nium, IEEE COMPUTER, July 2000.

. S. Jourdan, P. Sainrat, D. Litaize, Exploring Configurations of Functional Units

in Out-of-Order Superscalar Processors, Proc. 22nd Annual Int’l Symposium on
Computer Architecture, June 1995.

. A. Klaiber, The technology behind Crusoe processors, Transmeta Corporation, Jan.

2000.

. C. McNairy, D. Soltis, Itanium 2 Processor Microarchitecture, IEEE Micro, March

2003.

A. R. Omondi, Computer Arithmetic Systems: Algorithms, Architecture and Im-
plementations, Prentice Hall, 1994.

B. Parhami, Computer Arithmetic Algorithms and Hardware Designs, Oxford Uni-
versity Press, 2000.

E. Perelman, G. Hamerly, B. Calder, Picking Statistically Valid and FEarly Simu-
lation Points, International Conference on Parallel Architectures and Compilation
Techniques, September 2003.

R. Razdan, M. D. Smith, A High-Performance Microarchitecture with Hardware-
Programmable Functional Units, Proc. of MICRO-27, Nov. 1994.

G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, S. Amarasinghe, Dynamic
Native Optimization of Interpreters, IVME 03, June 2003.

R. D. Wittig, OneChip: An FPGA Processor With Reconfigurable Logic, IEEE
Symposium on FPGAs for Custom Computing Machines, 1995.

Z. A. Ye, N. Shenoy, P. Banerjee, A C Compiler for a Processor with a Recon-
figurable Functional Unit, ACM Int’l Symposium on Field Programmable Gate
Arrays, 2000.

In-Stat/MDR Workstation and Server Processor Chart,
http://www.mdronline.com/mpr/cw/cw_wks.html

	Introduction
	Background and Prior Art
	Parallelism
	Reconfigurable Functional Units
	Binary Compatibility

	Proposed Modification
	Basic Concept
	Standard Arithmetic Units
	Dynamic Functional Units
	Effects on Functional Unit Latencies
	Switch Decision Mechanism
	Additional Considerations

	Experimental Methodology
	Modifications to Simplescalar
	Reference Processors and Models
	SPEC CPU 2000 Benchmarks

	Results
	Performance Results
	Influence of Instruction Types
	Switching Dynamics

	Conclusions and Future Work

