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Motivation : Target Arch. Alternatives :
e Large data sets and computational e
requirements; e.g. Architectures General Purpose
o Motion Estimation for Real-Time Video Encoding (ASICS) bl
Flexibili
o Accurate Low-Power Filtering for Wireless Comm. oo >
e Target architectures include: ) Performance

e General Purpose Processors (including DSPs)
e Application-Specific Integrated Circuits (ASICs)
¢ Field-Programmable Compute Engines

e Target applications should have:
e More computation than I/O
e Fine-grained parallelism
e Regular structure




General Purpose Processors | :: ASICs e
e Most flexible architectures e Higher performance (specific application,
e Substantial die area allocated to: entirely inflexible)
o Data and instruction caches e Lower cost, BUT:
e Crossbar interconnect of functional units e High non-recurring engineering costs
» Speculative execution and branch prediction e Speeds up only one application
e Can extract some instruction-level parallelism e Only good for applications which are:
e But not large amounts of fine-grained o Well-defined
parallelism in compute-intensive applications o Wide-spread
Field-Programmable sete st
Computing e The Solution? e

e Bridging flexibility and performance

e Reconfigurable to suit current
application needs

e BUT, Implemented using FPGAs E B B B E

e Very fine-grained, therefore -
overhead due to generality is
expensive (area and performance) I A N I I |

e Programming FPGAs is either: e e

Poor in density or performance (using E B B B =

synthesis tools)

Requires intimate knowledge of the
FPGA (manually)

e Given a restricted domain of computations, use
reconfiguration to obtain a:
e Cost advantage (one chip, many applications)
e Performance advantage (customised to the domain)
e How?
e Many customised functional units (hundreds)
e Data cache — Directly streamed to/from external memory
e Instruction cache — Configurable controllers
e Global register file — Distributed registers/small RAMs
e Crossbar interconnect — Segmented buses




RaPiD in Reconfigurable
Pipelined Datapath
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Pros and Cons

e Pro: Removal of caches, crossbars and register files
frees up area that could be used for compute
resources

e Pro: Communication delay is reduced by shortening
wires

e Con: Reduces types of applications (e.g. highly
irregular, little reuse, little fine-grained parallelism)

e Pro: Regular computation-intensive tasks like DSP,
scientific, graphics and communications applications
will be better over G.P. architectures, and is more
flexible than an ASIC.

Overview

e Motivation v/
e Architecture Design

o Datapath
e Control
e Memory

e Benchmark Architecture
e General Architecture

e RaPiD-C
e Compilation

Datapath Architecture :

e Hundreds of functional units; broad
complexity range

e Coarse-grained, word-based

e Linearly arranged with word-based buses
o Simplifies layout and control
e Tightly spaced, no corner turning switches
e Multidimensional algorithms can be mapped

e Exceptions/control handled by tag bit in data
value (propagated to future function units)
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Functional Units : ConfigDelay Unit :
Data%ﬁ ata :1
Inputs T’ Core Ouﬂ:uuts N
— - Computation tatus _l . N ’ [il N N .
Inputs _"" " Ouﬂ:uuts
e Interconnect — Computation — Interconnect e Delay by up to three registers
e ConfigDelay allows for deeper pipelining e Deeper pipelining
e Examples include ALUs, multipliers, shifters,
memory, specific functions (e.g. LUTs, no control
input), configurable functions (e.g. bit manipulations)
i i
Configurable Interconnect : Configurable Interconnect :

e A set of segmented tracks running the entire
length of the datapath

e Segmented buses are connected with bus
connectors
o Left/Right/Both Driving
e ConfigDelay included

e Double-width data can be output to two
tracks and input to two functional units
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At the Functional Unit Cells
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T b i e Functional units are grouped to form a cell
f P e Cells are replicated to form the entire datapath
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Bus Connector Overview
e Motivation v/
@ e Architecture Design
0 1 Datapath v/
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ConfigDelay Memo ry
] . e Benchmark Architecture

Drive left?

Drive right?

e General Architecture
e RaPiD-C
e Compilation




Control Architecture

Control Architecture

e Control bits used in interconnect (multiplexer, Unit Bits/ |Units/ |Bits/ |Soft |Hard
tristate drivers, ConfigDelay and bus Unit |Cell |Cell
connectors) and function units Multiplexer 3 9 27 27 |0

e Static field-programmable bits Tristate Driver | 1 42 42 0 42
e Too inflexible A only good for static dataflow

networks ConfigDelay 2 15 30 0 30

e Programmed control Bus Connector |2 6 12 0 12

o Too wide, therefore very expensive per cycle FU1 0 3 0 0 0
FU2 2 3 6 6 0

Application Domain (Revisit) | :: FPGA Control s

e Pipelined computations which are very NH HH NH NH
repetitive

e Spend most of the time in deeply nested FPGA
computation kernels

e Soft control is statically compiled

e How should we design the control
architecture?

e State machines mapped to an FPGA
e Not very efficient due to performance of FPGA
e But, easy to reconfigure




Programmed Control e Reducing Instruction Length | ::
NH ‘MH H‘H ‘MH e Most of the soft control is constant per
application
Programmed e Regularity of computations allow much of the
Controller soft control to control more than one
operation in more than one pipeline stage
e Dedicated controller .
e Reduce controller size
e Better performance ]
e Less flexibility e Add a configurable control path
e VLIW still expensive (area and performance®)
Controller and Decoder 2 Control Path Cell 2
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Instruction Generator : Instruction Tree :
for i =0to 9
for j =0to 19
for k =0 to 29 =0| |k=1t05] k=6t29| |k=0| |k=1t05] k=61t029]
it (k ==0) v v v v v v
. load reg; < | x| 1100 0100 0110 1001 0000 0010
if (j <= 3)
\ _ IHII
i f I(Ec>rg;naddr' for i =0to 9
_ . o [:Z[] for j =0to 19
. W= w Y, < XXX for kK =0 to 29
if (k ==0 &% j > 3) if (k == 0) 1xxx;
w = 0; < Xxx1 if (j <= 3) x1xx;
if (k >5) xx1x;
if (k ==0&%j > 3) xxxl;
[ X X J (X X ]
0000 0000
[ X XX [ X XX
. 44 . 34
Instructions : Instruction Controller :
Py Smmess Canliphe
|00p 10 endl Progran
= = loop 4 end2 Crariai Cmmtrvaten
i nst 1 1100
v v v ' v v inst 5 0100
1100 0100 0110 1001 0000 0010 end2: inst 24 0110 [_msiwcton|

|l oop 10 endl

loop 4 end2

i nst 1 1100

i nst 5 0100

C-Instructions | end2: inst 24 0110
|l oop 16 endl
i nst 1 1001
i nst 5 0000

endl: inst 24 0010
hal t

© ol
=

|l oop 16 endl

F

i nst 1 1001
i nst 5 0000

endl: inst 24 0010
hal t

Y g3

Lemp
=]




Parallel Loop Control :

{114 T 10 1T

o Configurable Control Path

Parallel Loop Nests

e Single controller A cross product of two loop | Controller Lo oo
nests to generate words (not good) [ Controller | -e»

A

0OZ<on
Q
mo@aoams
0)
v

e Multiple controllers each executing one loop Controller |-

e Synchronisation using primitives: Controller | |-o»
e signal NUM : indicates that controller number
iNUM should stop waiting or skip to its next wait if
not waiting
e wait | :repeats instruction word il T until a
signal arrives

R
E
P
E
A
T

e Synchronisation handled by sync unit (signal, wait)
e Merge unit may be a bitwise OR or PLA if required
e Repeat unit handles repeat instruction repeats (inst)

Instruction Generators s Overview H
e Motivation v
STRCARONIZER | e Architecture Design
e mLicd o =Rl o Sy 'ﬁ;‘? UNIT o Datapath v/
e T ] e | H - Control ¥
it | [FHT] drp s e f 1 e Memory
[(FA = e e Benchmark Architecture

e General Architecture
e RaPiD-C
e Compilation




Memory Architecture

e Sequences of memory references are mapped to
address generators

e Input FIFOs are filled from memory and output
FIFOs are emptied to memory

Memory Requirements :

e Memory interface routes between streams
and external memory modules

e High bandwidth through:
e Fast SRAM

Mhasscry Irnart e Aggressive interleaving and/or batching
. e Out-of-order handling of addresses
wen | ) e Sustained data transfer of three words/cycle
=l N e May also stream from external sensors
Address Generators s Address Generators (Contid) | ::

e Resembles programmed controller but produces
addresses

e Addresses packaged with count and stride
e Repeaters increment addresses by the stride

e Addressing pattern statically determined at
compile time

e Timing is determined by control bits

e Synchronisation achieved by halting the
RaPiD array when:
e FIFO is empty on a read
e FIFO is full on a write




Overview

e Motivation v/

e Architecture Design v/
Datapath v/
Control v/
Memory v/

e Benchmark Architecture
e General Architecture

e RaPiD-C

e Compilation

Benchmark Architecture

e Application domain consists primarily of
signal-processing applications
e Requires high-precision multiply-accumulates
e 16-bit fixed-point datapath with 16x16
multipliers and 32-bit accumulates
e Cell comprises:
3 ALUs and 3 64-word RAMs
6 GP Registers and 1 multiplier

Benchmark (Continued)

e 14 data tracks
e 32 control tracks
e 16 replications of the cell

e Functional unit mix was chosen based on
requirements of a range of signal processing
applications

Characteristics

e .5 process (A = .3M)

e 3.3v CMOS using MOSIS scalable submicron
design rules

e 100 MHz clock
e 16-bit fixed point data, 16 Cells
16 Multipliers

48 ALUs
48 RAMs (64-word)

e 14 data buses, 32 control buses
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Area Requirements : FloorPlan :
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Configuration Overhead : Control Bits :
e Straightforward interpretation: triples the area Unit Bits/Unit | Units/Cell | Bits/Cell | Soft | Hard
. . Multiplexer 4 20 80 80 0
e BUT, hardwired interconnect and control (e.g. Tristate Driver 1 196 196 0 196
FSMs) are called overhead here ConfigDelay 2 26 52 0 52
H d . d . t ” t " f t | Bus Connector 2 15 30 0 30
° qr wired circuits wi .no use all functiona GP Register 5 5 5 5 0
units or the full data width ALU 7 3 21 18 3
e Configurable datapath evaluates a variety of “RAAl'\t’_' l_ : ‘1" : s 3
. ultiplier
Compl’ItatlonS Total 396 104 292

e Approx. 67% RaPiD but 95-98% for FPGAs




Power Consumption

e Optimised for performance rather than power
e But, features available for low power
applications:
Turn off clocks to unused registers
Tie inputs of unused functional units to ground
e Thus, power only used for clocking used units
and the clock blackbone

Application Performance

e Generally, 1.6 billion MACs per second

e FIR Filters
16 tap, 100 MHz sample rate
1024 tap, 1.5 MHz sample rate
16-bit multiply, 32-bit accumulate
Symmetric filter, double performance
e |IR Filters
48 taps at 33.3 MHz

Performance (Continued)

e Matrix Multiply

Unlimited size at 1.6 GMACS
2-D DCT (1.6 GMACS including reconfiguration)
Motion Estimation
Real-time Video

12 fps for DCT+Motion on 720x576 image

Including 4000 reconfiguration cycles
24 fps if double-gauged

2-D Convolution
FFT possible but harder to program

Overview

e Motivation v

e Architecture Design v/
Datapath v/
Control v/
Memory v’

e Benchmark Architecture v/
e General Architecture

e RaPiD-C

e Compilation




General Architecture

e Excludes/replaces implementation-specific

Generalised Interconnect .

e Bypass paths take

components from the benchmark architecture ad;’a”ta?i’ho“lthe ZED S e e S
. . . . nature o e layou
e Function units have an optional register for Y | S I I R
licati i instead of e Shortcut paths =
?;pp ;cgaDlo?-speC| ic memory instead o introduce hierarchy
onnglelay e Bus segments driven by
e |/O ports are used instead of the memory other bus segments —
interface e Allow dataflow graphs
to be implemented o e e o T
more efficiently
000 000
0000 0000
ecel ecel
Generalised Control : RaPiD Emulator :
e i : ] ih, e 13 Xilinx Virtex FPGAs
—E= == « 9 for the datapath
s — £ o 2 for a stream-based SDRAM memory subsystem
—E .ﬂ.l - - e 1 for a stream switch

e Sequencer executes simple instructions such as branches,
loops and subroutine calls with an instruction memory
(perhaps RISC)

e LUTs can remap instruction bits to control bits, with additional
status bits if necessary

e Benchmark architecture uses pipelined control (skewed
control); general architecture allows control offset

e 1 for a control generator

e Sized to accommodate:
e 32-cell RaPiD datapath

e Typical cell size containing 1 multiplier, 3 ALUs, 3
memories and 6 datapath registers

e Interconnect is implemented per-application




RaPiD Emulator s Overview e
e Motivation v
e Architecture Design v/
o Datapath v/
e Control v
e Memory v
e Benchmark Architecture v/
e General Architecture v/
e RaPiD-C
e Compilation
RaPiD-C 2 Compiled Datapath 2
e Broadcast computation model H’E‘“ T “""”* “‘“”
» Compiler takes care of pipelining iD"':'“'ﬂ*DH ' F'":'““'“” F‘“”“‘“E" b””““"—"" Note: Entire
o If STAGES pipeline stages were required, a compuation

loop like the following may be implemented:
for (s = 0; s < STAGES; s++)

e The Dat apat h instruction is ishorthandi for
the loop above e.g.

Dat apat h {
if (s ==0) result = inbata[s] * weight[s];
el se result =result + inData[s] * weight[s];

}

i

single clock
cycle.

Dat apat h {

if (s ==0) result = inData[s] * weight[s];

el se result =result + inData[s] * weight[s];
}




[ X X J [ X X J
0000 o000
o000 o000
a2 : a2
Control Loops : Data and Variables :
. For i;
e Multiple cycle-loops
Word sun{ STAGES], inData[ STAGES], weight[ STAGES];
For i;
for (i =0; i <N i++) {
for (i =0; i <N i++) { Dat apat h { _ .
Dat apat h { f[errp_[s] = inData[s] * weight[s];
if (i == 0) result = inData[s] * weight[s]; It (i ==0) sunfs] = tenmp[s];
el se result = result + inData[s] * weight[s]; ) el se sunfs] = sun{s] * tenp[s];
} } }
e This does a MAC per clock cycle, therefore | e The compiler recognises that t enp[ s] does not
is used to initialise the datapath at each cycle require a register but sunf s] does
000 000
0000 0000
[ X XX [ X X
H : H
Streams : Streams (Continued) :
Stream n strlnput;
Streanfut strQutput’ vt hr ead:
Pi pe i nDat a; for (k =0; k <N k++) {
For i, j, k; Dat apat h {
strQutput = Y[K]; // Note: Streamis the target of assignnent
Par { }
t hread: }
for (i =0; i <N i++) { }
Dat apat h {
if (s ==0) inData = strlnput;
if (s == STAGES - 1) strQutput = inData;
} e X and Y are external memory streams
} e Stream definition and access must be decoupled
vt hread: . . . uys .
for (j =0; j <N j++) { e Decoupling requires definition and access to be in
Dat apat h {

strinput = X[j];
}
}

parallel threads
¢ Real threads: Maximum 4




(X X J (X X J
0000 0000
[ X [ X N
a2 : a2
Pipes : Ideal Execution :
e Consider writing x[s] in stage s ‘g:di | nDat a STAGES], wei ght [ STAGES] ;
e It cannot be read in stage s-1 or s+1 Vord resul t [ STAGES];
x[s + 1] = x[s]; // illegal for (i =0; i <N i++) {
. . Dat apat h {
[ ] P'pe Varlab|eS mUSt be USGd if (S > 0) resu|t[s] = resu|t[5 — 1];
/1 Initialisation
if (s ==0)
result[s] = inbata[s] * weight[s];
el se
result[s] =result[s] + inData[s] * weight[s];
}
}
[ X X J [ X X J
0000 0000
o000 o000
T : a2
Pipe Variables : Unchanged Ripple :
Word i nDat a[ STAGES], wei ght [ STAGES]; Pi pe inDat a;
For i;
Pi pe result; For i;

for (i =0; i <N i++) {
Dat apat h {
if (s ==0)
result = inData[s] * weight[s];
el se
result = result + inData[s] * weight[s];

for (i =0; i <N i++) {
Dat apat h {
if (s ==0) inbata = Xi];
if (s == STAGES — 1) Y[i] = inData;
}
}
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More RaPiD-C : Overview :
e RaPiD-C also supports e Motivation v’
» RAMs as basic building blocks e Architecture Design v/
¢ Pipe delays o Datapath v
« No-Control (Always-Perform) e Control v
» BackPipes e Memory v
« Generic Function Units e Benchmark Architecture v/
C Operators are compiled to function unit references e General Architecture v/
Custom combinational and sequential units can be e RaPiD-C v
specified e Compilation
1 1
Compilation : Other Requirements :
e Current work by the o i e Time multiplexing (reconfiguration to support
UW RaPID team i = larger datapaths)
e RaPiD-C is compiled to : . . .
dataflow graphs '_:I{;._.l e Mapping to function units and memories

Datapath graphs are
created for RaPiD

Datapath graphs then T et
need to be scheduled ] U _“|_|4:r
over clock cycles e it :

e Predicated execution (avoiding control
hazards)

e Stitching graphs
e Scheduling for optimised control




Conclusions

e High performance, low cost for a good
domain of computations

Due to reconfiguration to obtain a
cost/performance advantage

e RaPiD can be low-powered

Local communication, distributed memories, clock
disabling

e RaPiD can be a closely-coupled co-processor
e It can be an embedded system
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