i High Performance Computing i Classes of computing

= Introduction to classes of computing Computation Consists of :
Sequential Instructions (operation)
= SISD = Sequential dataset
= MISD . _ _
We can then abstractly classify into following classes of computing
= SIMD system base on their characteristic instructions and dataset:
= MIMD = SISD Single Instruction, Single data
: « SIMD Single Instruction, Multiple data
[
Conclu3|on « MISD Multiple Instructions, Single data
« MIMD Multiple Instructions, Multiple data

i High Performance Computing i SISD

= Introduction to classes of computing

Single Instruction Single Data

= SISD = One stream of instruction
= One stream of data
= MISD = Scalar pipeline
= SIMD « To utilize CPU in most of the time
= MIMD = Super scalar pipeline

_ = Increase the throughput
Conclusion = Expecting to increase CPl > 1

Improvement from increase the “operation
frequency”

i SISD

Imstruction

Control Execution LLInit

Data

;iSISD

Example
A=A+1
Assemble code
asm(“mov %%eax,%1
add $1,%eax
:(=m) A%);

i SISD Bottleneck

= Level of Parallelism is low
= Data dependency
= Control dependency

= Limitation improvements
= Pipeline
= Super scalar
= Super-pipeline scalar

i High Performance Computing

= Introduction to classes of computing
= SISD

= MISD

= SIMD

= MIMD

= Conclusion

i MISD

= Multiple Instructions Single Data
= Multiple streams of instruction
= Single stream of data

= Multiple functionally unit operate on single data

= Possible list of instructions or a complex
instruction per operand (CISC)

= Receive less attention compare to the
other

i MISD

Instruction Stream Execution Unit

Instruction Stream Execution Unit

data stream

Instruction Stream Execution Unit

i MISD

s Stream #1
Load R0O,%1
Add $1,RO
Store R1,%1

= Stream #2
Load RO,%1
MUL %1,R0
Store R1,%1

i MISD

MISD

ADD_ MUL_SUB $1,$4,$7,%1

SISD

Load RO,%1
ADD $1,R0
MUL $4,R0
STORE %1,R0

i MISD bottleneck

= Low level of parallelism
= High synchronizations

= High bandwidth required
= CISC bottleneck

= High complexity

i High Performance Computing

= Introduction to classes of computing
= SISD

= MISD

= SIMD

= MIMD

= Conclusion

i SIMD

= Single Instruction, Multiple Data
= Single Instruction stream
= Multiple data streams

= Each instruction operate on multiple
data in parallel

= Fine grained Level of Parallelism

i SIMD

Execution Unit Drata stream

Execution Unit Drata stream
Instruction Stream

Execution Unit Data stream

Execution Unit Drata stream

i SIMD

= A wide variety of applications can be
solved by parallel algorithms with SIMD
= only problems that can be divided into sub
problems, all of those can be solved
simultaneously by the same set of
instructions

= This algorithms are typical easy to
implement

i SIMD

= Example of

= Ordinarily desktop and business applications
= Word processor, database , OS and many more
= Multimedia applications
= 2D and 3D image processing, Game and etc
= Scientific applications
« CAD, Simulations

i Example of CPU with SIMD ext

= Intel P4 & AMD Althon, x86 CPU
= 8 x 128 bits SIMD reqisters

= G5 Vector CPU with SIMD extension
= 32 X 128 bits registers

= Playstation II
= 2 vector units with SIMD extension

i SIMD operations

i SIMD

= SIMD instructions supports
= Load and store
= Integer
= Floating point
= Logical and Arithmetic instructions

= Additional instruction (optional)

= Cache instructions to support different locality
for different type of application characteristic

i Intel MMX with 8x64 bits registers

(5 buts x 8) Packed bytes
hs ab 55 4547 4059 2N 24 15 1615 ar }

{16 bats x 4) Packed words
he 48 47 5 5 R F

(52 bits x 2) Packed double words

i3 5231

l [| K] :I

{54 buts x 1) Quadword
1

i Intel SSE with 8x128 bits registers

I I I 128-Bd Packed Double-
Priaaaicn Flaakng-Pon

e &1 B3 a

I I I I I I I J I I I I I I I I I 125-B8 Packad Byie Inlagars

I I [] I | I [] 128:HE Facked Wond Indsgons
LF1 i

1258-B88 Packai O Lo
I [I I ['l Tﬂ;ﬁ;‘ ackail Doubdmwee
[T

128-Bi Packed Quatdword
I | | riEges
37 o

i AMD K8 16x128 bits registers

Multimedia Extension and Streamming SIMD
Floating-Poirt Registers Extenson (S5E) Registors

MO SSTO XRIMO

MIM1/5T1 KNEMT

MIMZ/ST2 XKMIMZ

MIMESETE XMIMZ

MIM45TS KNAMA

MINESASTS XMMS

MIMESSTE XMME

MIMTSTT KNAT

KranAE

KXhEna
Flags XM

Registes KNI
[] eFass XNaM12
: i XMMZ
Irestruction Pointer XN
I — s

G5 32x 128 bits registers

233

- Vector Register File (WRF) -~

RessiiDestnaton Veckor Regsster

SIMD

i
i

Example of SIMD operation
SIMD code

i Adding 2 sets of 4 32-bits integers

n V1={1,234}

i V2={55,5,5}

VecLoad v0,%0 (ptr vector 1)
VecLoad v1,%]1 (ptr vector 2)
VecAdd VI,V0

Or

PMovdq mmO0,%0 (ptr vector 1)
PMovdq mm1,%]1 (ptr vector 2)
Paddwd mm1,mm0

Result

V2 ={6,7,8,9};

Total instruction

2 load and 1 add

Total of 3 instructions

SISD code
i Adding 2 sets of 4 32-bits integers
n V1={1234}
n V2={555,5}
Push ecx (load counter register)
Mov %eax,%0 (ptr vector
Mov %ebx,%! (ptr vector

.LOOP
Add %%ebx,%%eax (v2[i] = v1[i] +
v2[i])
Add $4,%eax (v1++)
Add $4,%ebx (v2++)
Add $1,%eci (counter++)
Branch counter < 4
Goto LOOP
Result {6,7,8,9)
Total instruction
3 Load + 4x (3 add) = 15 instructions

SIMD Matrix multiplication

C code with Non-MMX
intl6 vect[Y_SIZE];

int1l6 matr[Y_SIZE][X_SIZE];
int16 result[X_SIZE];

int32 accum;

for (i=0; i<X_SIZE; i++)

{

accum=0;
for (j=0; j<Y_SIZE; j++)
accum += vect[j]*matr[j][i]; result[i]=accum:;

SIMD Matrix multiplication

C Code with MMX

for (i=0; i<X_SIZE; i+=4)

{

accum = {0,0,0,0};
for (j=0; j<Y_SIZE; j+=2)

accum += MULT4x2(&vect[j], &matr[j][i]);

result[i..i+3] = accum;

MULT4x2()

= movd mm7, [esi] ; Load two elements from input vector
= punpckldg mm7, mm7 ; Duplicate input vector: v0:v1:v0:v1l
= movg mmO, [edx+0] ; Load first line of matrix (4 elements)

= movg mm6, [edx+2*ecx] ; Load second line of matrix (4
elements)

= movg mml, mmO ; Transpose matrix to column presentation
punpcklwd mmO0, mm6 ; mmoO keeps columns 0 and 1

= punpckhwd mml, mm6 ; mm1l keeps columns 2 and 3

= pmaddwd mmO, mm7 ; multiply and add the 1st and 2nd column
= pmaddwd mm1, mm7 ; multiply and add the 3rd and 4th column
= paddd mm2, mmO ; accumulate 32 bit results for col. 0/1

= paddd mm3, mm1 ; accumulate 32 bit results for col. 2/3

SIMD Matrix multiplication

MMX with unrolled loop
for (i=0; i<X_SIZE; i+=16)

{
accum={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
for (j=0; j<Y_SIZE; j+=2)
{
accum[0..3] += MULT4x2(&vect[j], &matr[j][i]);
accum[4..7] += MULT4x2(&vect[j], &matr[j][i+4]);
accum[8..11] += MULT4x2(&vect[j], &matr[j][i+8]);
accum[12..15] += MULT4x2(&vect[j], &matr[j][i+12]);
}
result[i..i+15] = accum;
}

SIMD Matrix multiplication

S b g s - ek
IEN TR -+ N
P ——
.-
omoomong 4 == P Yo =
[= - = o -
BRI ¢ Bl A g o = oo
— g e - -
neinid e AR I g
-
— : = I
e - -
= el)|
- - —— 1 -
- -
o L _— - —m——
f — ——

= =] == = == == | — =
el e Saw o B A

Source: Intel developeris Matrix Multiply Application Note

SIMD MMX performance

Intel Media Benchmark

Source: http://www.tomshardware.com
Article: Does the Pentium MMX Live up to the Expectations?

i High Performance Computing

= Introduction to classes of computing
= SISD

= MISD

= SIMD

= MIMD

= Conclusion

i MIMD

= Multiple Instruction Multiple Data
= Multiple streams of instructions
= Multiple streams of data
= Middle grained Parallelism level
= Used to solve problem in parallel are those problems
that lack the regular structure required by the SIMD
model.
= Implements in cluster or SMP systems

= Each execution unit operate asynchronously on their
own set of instructions and data, those could be a
sub-problems of a single problem.

i MIMD

= Requires
= Synchronization
- Inter-process communications
- Parallel algorithms

- Those algorithms are difficult to design,
analyze and implement

i MIMD

Instruction stream 1 Execution Lnit 1 Data stream 1
Instruction stream 2 Execution Unit 2 Data stream 2
share memary ar
interconnection
netwyork
Instruction stream 3 Execution Unit 3 Data stream 3

Instruction stream M Execution Lnit 1 Data stream M

i MPP Super-computer

= High performance of single processor
= Multi-processor MP
= Cluster Network
= Mixture of everything
= Cluster of High performance MP

L= | L= | nodes
i Example of MPP Machines i Cray X-MP
= Earth Simulator (2002) = 1982
= Cray C90 = 1 G flop
= Cray X-MP = Multiprocessor with

2 or 4 Crayl-like
processors

= Shard memory

= 1 G flop per
processor

= 8 or more
processors

i The Earth Simulator

= Operational in late 2002

= Result of 5-year design and
implementation effort

= Equivalent power to top 15 US
Machines

i The Earth Simulator in details

= 640 nodes

= 8 vector processors per node, 5120 total
= 8 G flops per processor, 40 T flops total
= 16 GB memory per node, 10 TB total

= 2800 km of cables

= 320 cabinets (2 nodes each)

= Cost: $ 350 million

i Earth Simulator

& Earth Simulator * Earth Simulator

Méw Earth Simulator Facillies

i High Performance Computing

= Introduction to classes of computing
= SISD

= MISD

= SIMD

= MIMD

= Conclusion

i Conclusion

= Massive Parallel Processing Age
= Vector & SIMD 256 bits or even with 512

= MIMD
= Parallel programming
= Distribute programming

= Quantum computing!!!
= S/W slower than H/W development

i Appendix

= Very High-Speed Computing System
= Michael J. Flynn, member, IEEE
= Into the Fray With SIMD

= Understanding SIMD
= Matrix Multiply Application Note
= Parallel Computing Systems

= Dror Feitelson, Hebrew University
= Does the Pentium MMX Live up to the Expectations?

i High Performance Computing

End of Talk

Thank you

