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Introduction

i Multimedia workloads increasingly emphasize

relatively simple calculations on massive
quantities of mixed-width data

i Underutilizes the processing strengths of

conventional processors in two important

respects:

1. Size of data elements underutilizes the processoris
wide datapath
fi Multimedia extensions and SIMD instructions attempt to

address this defficiency (see SIMD later)

2. Instruction bandwidth is much higher than is needed
for regular dataflow-dominated computations on large
datasets

fi. Renewed interest in vector processing (see IRAM later)

Reconfigurable Computing

i A fundamentally different way is to configure
connections between programmable logic
elements and registers to construct an efficient,

highly parallel implementation of the processing

kernel

i The interconnected network of processing
elements is called a reconfigurable fabric

i The dataset used to program the interconnect
and processing elements is a configuration

i The advantages of this approach, known as
reconfigurable computing is that no further
instruction download is required after a

Reconfigurable Computing Challenges

i Picking the right logic granularity

i Living with hard constraints

i Minimising configuration overheads
i Finding appropriate mappings

i Excessive compilation times

i Providing forward compatibility

configuration is loaded and the right combination
of simple processing elements can be combined
to match the requirements of the computations




PipeRench solves some of these problems

Attributes of Target Kernels

i PipeRench uses a technique called pipeline
reconfiguration to solve the problems of
compilability, reconfiguration time, and forward
compatability

T Architectural parameters, including logic block
granularity, have been chosen to optimize
performance for a suite of multimedia kernels

i PipeRench is claimed to balance the needs of the
compiler against the design realities of deep sub-
micron process technology

i Reconfigurable fabrics can provide significant
benefits for functions with one or more of the
following features:

1. The function operates on bit-widths that differ from
processoris native word size

2. Data dependencies in the function allow multiple
function units to operate in parallel

3. The function is composed of a series of basic
operations that can be combined into a single
specialized operation

4. The function can be pipelined

5. Constant propagation can be performed, reducing the
complexity of operations

6. The input values are reused many times within the
computation

Two broad categories emergeO

Stream-based example

I Stream-based functions process a large data
input stream and produce a large output stream

I Custom instructions take a few inputs and
produce a few outputs

Code for a FIR filter and a pipelined version for a
three-tap filter




Performance on 8-bit FIR filters

Custom instruction example
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i The reconfigurable computing solution replaces
the O(n) loop with an adder tree of height O(log n)

Configuration time & Communication latency

Possible placements for reconfigurable fabrics

i If the previous popCount function is called just
once it may not be worth configuring the fabric
because the time needed to configure the
function exceeds the benefit obtained from
executing the function on the fabric

i If the function is used outside of a loop, and its
results are to be used immediately, the fabric
needs direct access to the processoris registers

i On the other hand if the function is used in a loop
with no immediate dependencies on the results,
performance can be improved by providing the
fabric with direct access to memory
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Pipelined Reconfigurable Architectures

i We have seen how application-specific
configurations can be used to accelerate
applications

i The static nature of these configurations causes
problems if

1. The computation requires more hardware than is
available, and

2. The configuration doesnit exploit the additional
resources that will ineviatbly become available in future
process generations

I Pipeline reconfiguration allows a large logical
design to be implemented on a small piece of
hardware through rapid reconfiguration of that
hardware

Pipeline Reconfiguration
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i This diagram illustrates the process of virtualizing a

five-stage pipeline on a three-stage device

Benefits of pipeline reconfiguration

i Pipeline reconfiguration breaks the single static
configuration into pieces that correspond to pipeline
stages i these are then loaded, one per cycle, into the
fabric. Computation proceeds even though the whole
configuration is never present at one time

T With this technique, the compiler is no longer
responsible for satisfying fixed hardware constraints

i In addition, the performance of the design improves in
proportion to the amount of hardware allocated to that
design; as future process technology makes more
transistors available, the same hardware designs
achieve higher levels of performance

i The configuration cost is hidden

Challenges of pipeline reconfiguration

i For virtualization to work, cyclic dependencies

must fit within one stage of the pipeline
fi Interconnections to previous or future stages other than
the immediate successor are not allowed
i Fortunately, this is not a severe restriction on
multimedia computations, and the architecture provides
pass registers to support forwarding

i The primary challenge is configuring a

computationally significant pipeline stage in one
cycle
fi Wide on-chip configuration buffers must be used

i Before swapping virtual stages, the state of the

resident stage, if any, must be stored. This state
needs to be restored when loading this stage
once more




The PipeRench architectural class

Pass Register File
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T ALUs are LUTs; PEs have access to global I/O
bus; PEs can access operands from registered
outputs of previous as well as current stage; no
interconnect to previous stage

i Provides efficient (registered) interstage

connections; ALU output can write to any of P
registers otherwise register is loaded from
previous stage

Interconnection network

Evaluation

T Full B-bit NxN crossbar; barrel shifter for word-
based arithmetic

i Three architectural parameters:

N (number of PEs per stage)
B (bit-width of ALU and registers), and
P (number of pass registers)

e 1 s 1

i Evaluate performance as parameters varied using

several kernels:
ATR

Cordic

DCT

FIR

IDEA

Nqueens

Over (Porter-Duff operator for joining two images based
on a mask of transparency values for each pixel), and

popCount
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Representative results on up to 8 registers

Over all kernels
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i Speedup for 8-bit Pes, 8 registers/PE, 128-bit wide
stripes (stages)




