Design Automation Methodologies for Extensible Processors Platform

Newton Cheung

School of Computer Science & Engineering
The University of New South Wales
Sydney, Australia

ncheung@cse.unsw.edu.au

SoC Design Challenges

- ï Application functionality
- ï Ever changing nature of embedded product

Increasing software content

Flexibility

- ï Power consumption
- ï Chip area
- ï Cost

Customizing the architecture to the specific application (application domain)

Efficiency

Outline

- ï System-On-Chips Design Challenges
- ï Extensible Processors Platform
- ï Background ñ Xtensa
- i Problems in Extensible Processors Platform
- ï The Goal of the research
- ï Proposed Solution
- i INSIDE
- i MINCE
- ï Conclusions

ncheung@cse.unsw.edu.au

Flexibility vs. Efficiency (Energy)

Source: Fei Sun @ ICCAD 2002

ncheung@cse.unsw.edu.au 3 ncheung@cse.unsw.edu.au

Flexibility vs. Efficiency (Performance)

Application Specific Processor

ncheung@cse.unsw.edu.au

Optimized Processor Design (ASIP)

- ï Cost
 - ñ Small size
- ï Performance
 - ñ Application extensions
- ï Productivity
 - ñ Rapid hardware and software

Extensible Processors Platform

- i Represents the state-of-the-art in application specific instruction-set processor (ASIP)
- ï Consists of a base processor containing a base instruction set, plus the capability to customize their architecture to replace computationally intensive code segments
- The goal of designing extensible processors is typically to maximize the performance of an application, while meeting design constraints

ncheung@cse.unsw.edu.au 7 ncheung@cse.unsw.edu.au 8

Extensible Processors Platform

- ï Enables to address three architectural levels on the base processor:
 - ñ Inclusion/Exclusion of predefined blocks
 - ñ Instructions extension
 - ñ Parameterizations

Outline

- ï System-On-Chips Design Challenges
- ï Extensible Processors Platform
- ï Background ñ Xtensa
- i Problems in Extensible Processors Platform
- ï The Goal of the research
- ï Proposed Solution
- ï INSIDE
- i MINCE
- ï Conclusions

ncheung@cse.unsw.edu.au 10

Background (Xtensa)

Source: www.tensilica.com

Xtensa Architecture

ncheung@cse.unsw.edu.au 11 ncheung@cse.unsw.edu.au 1

Xtensa Custom Instructions (TIE)

Source: www.tensilica.com

ncheung@cse.unsw.edu.au 1

Xtensaís Design Flow

ncheung@cse.unsw.edu.au 14

Extensible Processor (Why?)

	Standard Processor	Extensible Processor	ASIC (RTL Logic)
Application tuned data paths	NO	Yes: High-level TIE	Low-level RTL
Task Control	C/C++	C/C++	No
Simulation	Fast simulation or board	Fast simulation or board	RTL simulation: 100x slower
Multiple Engines	Limited	Simple directed MP interface	Possible, but hard to design and model

Example: Digital Video

Digital Video

Source: www.tensilica.com

Tensilica provides high-throughput image processing and control

Xierna Optimized Performance @ 2006Ptz (0.18µ): http://www.sentsc.org

ncheung@cse.unsw.edu.au 15 ncheung@cse.unsw.edu.au 16

Example: Multiple Processors for TOE

TCP/IP Offload Engine (TOE)

NEC TOE can achieve full wire speed by eight parallel & two management and dispatch Tensilica cores (Total 10) for High Performance IP based Network Storage --- NAS & IP-SAN

Source: www.tensilica.com

ncheung@cse.unsw.edu.au

17

Example: Voice Gateway

Voice Gateway

Source: www.tensilica.com

Five Tensilica cores in common development system

ncheung@cse.unsw.edu.au

Outline

- ï System-On-Chips Design Challenges
- ï Extensible Processors Platform
- ï Background ñ Xtensa
- i Problems in Extensible Processors Platform
- ï The Goal of the research
- i Proposed Solution
- **INSIDE**
- **i** MINCE
- ï Conclusions

Problems in Automation??

ncheung@cse.unsw.edu.au 19 ncheung@cse.unsw.edu.au 20

Generic Design Flow of Extensible Processor

Previous Works

- i Profiling/Identificationñ [Binh 1998], [Yang 2002], ARC, Xtensa
- i Design methodology for different aspects ñ [Gupta 2000], [Jain 2001]
- i Instruction generation/selectionñ [Brisk 1998], [Kastner 2001], [Sun 2003], [Zhao 2002]
- i Overall design flow for extensible processorsñ [Kathail 2002], [Lee 2002], [Sun 2002]
- i Vendor and academic
 ñ ARC, Lisatek, Xtensa, ASIP-Meister

ncheung@cse.unsw.edu.au 22

Outline

- ï System-On-Chips Design Challenges
- ï Extensible Processors Platform
- ï Background ñ Xtensa
- ï Problems in Extensible Processors Platform
- ï The Goal of the research
- i Proposed Solution
- i INSIDE
- **I** MINCE
- ï Conclusions

Goal of the Research

- ï To automate the design flow of extensible processors platform.
- i Given an application and design constraints, the system configures an extensible processor that maximizes the performance of an application while satisfying the design constraints.

ncheung@cse.unsw.edu.au 23 ncheung@cse.unsw.edu.au 24

Proposed Solution

INSIDE / MINCE

1. INSIDE system

- ñ Identifies sections of code segments which are suitable for translation to instructions.
- ñ A two-level hierarchy approach.
- ñ A performance estimator.

Reduces the design turnaround time significantly.

2. MINCE tool

ñ Match code segment with pre-synthesized extensible instruction using combinational equivalence.

Enhances reusability of the extensible instructions.

ncheung@cse.unsw.edu.au 26

Outline

- i System-On-Chips Design Challenges
- ï Extensible Processors Platform
- ï Background ñ Xtensa
- ï Problems in Extensible Processors Platform
- The Goal of the research
- i Proposed Solution
- ï INSIDE
- **I** MINCE
- ï Conclusions

INSIDE system (Overview)

Phase I: Heuristic Algorithm (Part I)

- ï For selecting pre-configured processor
- i The area delay product, *EP_i* of processor *i* for a certain application

$$EP = \frac{1}{\#CC \times Period \times Area}$$

Processor	Clock Cycle	Clock Period	Area	EP
P1	12000	6ns	5000	2.78
P2	8000	8ns	8000	1.95

ncheung@cse.unsw.edu.au 29

Fitting Function

- ï The four characteristics:
 - ñ The frequency of use of a code segment
 - ñ The number of operands in a code segment
 - ñ The percentage of integer (short) type operands in all the operands
 - ñ The percentage of bit operations in all the operands
- ï The fitting function:

$$FittingFunction = F.U. \times \frac{1}{\left\lceil \frac{N.O.}{\alpha} \right\rceil} \times T.O. \times B.O.$$

 α ñ the ideal number of operands in the code segment.

Phase II: Identify Code Segments

ï Problem:

ñ Application has millions of lines of C code, how do we know which code segment is good for converting to extensible instruction

ï Fitting function

- ñ Identifies code segments which are suitable for translation to extensible instructions
- ñ Extracts characteristics of the code segment

ncheung@cse.unsw.edu.au 30

Relationship

i Relationship between the fitting function and the speedup/area ratio of the instruction

Phase III: Heuristic Algorithm (Part II)

- ï For selecting extensible instructions
- i The potential speedup/area ratio, *PSAR*, of extensible instruction in processor:

$$PSAR = \frac{\%_of_\#CC \times Speedup}{Area \times Latency_{max}}$$

Instruction	% of total clock cycle	Speedup	Area	Latency	PSAR
Inst 1	13	3x	1500	6ns	43333
Inst 2	10	6x	2500	6ns	34286

ncheung@cse.unsw.edu.au 33

		Extensible	Application	Area	Spex	dup u	nder	Latency	Cost
		Inst	Used	[gates]	Pl	P2	P3	[ns]	function
_		GSMS	gamdee, gamese	2740	3.50×	1.12×	1.20×	6.00	0.03
Eyna	rimental I	CAL-1	gamdee- gamese	16000		$4.50 \times$	$3.50 \times$	6.00	0.009
	minoman	GSMMR	gamdee, gameec	23400		N.A.	N.A.	7.46	0.004
		GSMLM	gamdee, gameec	13200	N.A.	$1.25 \times$	1.30×	6.25	0.003
		DC3	adpemene	2630	N.A.	1.20×	1.30×	6.00	0.02
		DC4	adpem _{enc}	5810	$3.65 \times$		3.00×	6.00	0.03
		DC1,DC2	adpemene	10154	1.30×	1.20×	$1.50 \times$	6.00	0.004
		MOD3	voice	5500	N.A.	17.0×	$[10.9 \times]$	6.40	0.11
		LDE	voice, mprg2 _{dec}	1100		$2.50 \times$		6.50	0.06
Area	Pre-configured Pr	MN,LP,CE	voice, mprg2 _{dec}	6800		5.28×		6.80	0.03
Constraint	Area [mm2]	FM32	voice, mprg2 _{dec}		8.98×	N.A.	11.6×	7.10	0.02
Conourant	Area gates	FREXP	voice, mprg2 _{dec}	3200	N.A.	1.90×		6.90	0.02
		LDE,FRE	voice, mprg2 _{dec}	3300		3.30 x		7.00	0.02
	2 01101 11111	FREXPLN FD82	voice, mprg2 _{dec}	53800		1.10×		6.90	0.01
	Clock Rate [M	FA32	voice, mpeg2 _{dec}	32000		15.9×	8.14×	14.6 8.50	0.009
						14.16.			
		MYSAT	mpeg2 _{dec}	50 190	3.30×	4.12×	4.20×	4.33 5.57	0.34
,		ADD14	mpeg2 _{dec}	1065	4.51×	57.A	5.55×	6.00	0.12
INCIDE	. INlataustian Ca		mpeg2 _{dec}	3950	1 20 v	1 200 v	1.30×	5.96	0.05
INSIDE	: INstruction Se	QUAN		1200	P 90~	10.00	10.00	6.00	0.28
Decian	Exploration for	EMULI	g721 _{dec} , g721 _{cn}	1200	p.aux	10.70×	10/0×		0.22
Design	Exploration for	RECONS.	g721dec. g721ene	7000	2.60×	2.50×	2.50×	7.20	0.007
'		SSIZE	g721 _{dec} , g721 _{enc}	1				7.50	0.005
	ţ-	DUIME	MANAGES STATES	41000	DCG D IV	N.O.V.N	4	1.00	0.000
Drassassa	Processor with someone 9								
	Processor with coprocessor & Execution Time All the solutions								
extens	ible instructions	LAC							
	1	_					1		
	Verify the solution								
			and system	*		/			
			una system						
ncheung@cse.unsw.edu	.au							3	5

Phase IV: Performance Estimation

- ï For rapidly estimating the execution time
- The execution time estimation, ETE, for an extensible processor with a set of selected extensible instruction:

$$ETE = \left\{ CC_Unaffected + \frac{CC_affected}{Speedup} \right\} \times Latency_{max}$$

ncheung@cse.unsw.edu.au 34

Results

Application.	Our Best Solution wrt time		Original Solution		
	Area [gates]	Execution Time [sec.]	Area [gates]	Execution Time [sec.]	
adpcm encoder	77,964	1.77	61,620	2.06	
gsm encoder	79,540	13.36	61,620	13.68	
gsm decoder	78,093	6.58	61,620	7.21	
g721 encoder	73,200	1.96	61,620	2.69	
g721 decoder	63,200	2.06	61,620	2.81	
mpeg2 decoder	63,255	0.6321	61,620	0.8021	
voice recognition	105,900	0.2638	61,620	1.8018	

Results (Design Turnaround Time)

Results (Pareto Points)

Application.	Pareto Points	Error rate of perf.	
	obtained	estimation on	
	(Total Pareto Points)	Pareto Points [%]	
adpcm encoder	3(6)	3%	
gsm encoder	4(4)	7%	
gsm decoder	5(5)	7%	
g721 encoder	4(6)	4%	
g721 decoder	2(3)	5%	
mpeg2 decoder	5(5)	7%	
voice recognition	9(9)	4%	
2.0 - 2.0 - 1.5 -		***	
± 1.5 −	and the second	Prince	
1.0 -	e. Are		
0.5 -	Second Se	•	
0.0			
0 50,000	100,000 150,000 200,000	250,000 300,000	
	Area [gates]		

Results of INSIDE system

- ï Mediabench applications
- i Speedup of the applications:
 - \tilde{n} On average 2.03x (up to 7x)
- i Hardware overheads:
 - ñ On average 25% (up to 72%)
- ï Pareto points:
 - ñ Obtained on average 83% (up to 100%)
 - ñ On average within 5% of the execution time

Outline

ncheun

- ï System-On-Chips Design Challenges
- ï Extensible Processors Platform
- ï Background ñ Xtensa
- ii Problems in Extensible Processors Platform
- ï The Goal of the research
- ï Proposed Solution
- ï INSIDE
- **I MINCE**
- ï Conclusions

ncheung@cse.unsw.edu.au 39 ncheung@cse.unsw.edu.au 40

The Aim of the MINCE

- i Matching INstructions using Combinational Equivalence
- i Automatically matching code segments to presynthesized specific instructions.

Functional 3 Equivalent

```
// Pre-synthesized specific instructions
state total 32
iclass ei El {out arr, in art, in ars} {in state}
reference El {
    wire [31;0] tmp
    assign tmp = TIEmul(art, ars, 1ib0) >> 4;
    assign arr = tmp + state;
}
```

ncheung@cse.unsw.edu.au

41

Motivation

MINCE Tool

i An automated tool for matching presynthesized extensible instruction to the functional equivalence of code segments using combinational equivalence checking in the extensible processors platform.

MINCE Tool

i MINCE consists:

ñ A translator

ñ A filtering algorithm

ñ A combinational equivalence checking tool

Functional equivalence implementation

ncheung@cse.unsw.edu.au 43 ncheung@cse.unsw.edu.au 44

Related Works

- ï Simulation techniques:
 - [Stadler 1999]
- i Graph matching techniques: [Corazao 1993] [Kang 1995] [Liem 1994] [Shu 1996]
- ï Equivalence verifications:[Clarke 2003], [Pnueli 1998], [Semeria 2002]

ncheung@cse.unsw.edu.au 45

Phase I: Translator

- The goal of the translator is to convert the application written in C/C++ to a set of code segment in Verilog HDL using a systematic approach.
- To reduce the granularity of the application written in C/C++.
- ï The translator consists of four steps:
 - ñ Separate the application into code segments;
 - ñ Compile code segments;
 - ñ Convert to register transfer list;
 - ñ Map to Verilog HDL file.

Our Contributions

- i Enhances reusability of the extensible instructions.
- i MINCE tool is superior to computationintensive and error-prone simulation approaches.
- The usage of functional equivalence checking ensures that the results are largely independent of the programming style of the application.

ncheung@cse.unsw.edu.au 46

Translator

Phase II: Filtering Algorithm

- The goal of the filtering algorithm is to eliminate the unnecessary and complex Verilog HDL file into the combinational equivalence checking model.
- i Verilog HDL files can be pruned as non-match:
 - ñ Differing number of ports;
 - ñ Differing port sizes;
 - ñ Insufficient number of base hardware modules to present complex module.

Complex Module	Implementation - Hardware Module		
Multiplier (32-bit)	Add, Shift		
Multiplier (32-bit)	Multiplier (16-bit), Adder, Multiplexor		
Division (32-bit)	Multiplier (32-bit), Reciprocal		
Division (32-bit)	Subtract, Shift		
Square Root (32-bit)	Multiplier (32-bit), Add, Subtract		
Sine (32-bit)	Multiplier (32-bit), Add, Subtract		
Cosine (32-bit)	Multiplier (32-bit), Add, Subtract		

ncheung@cse.unsw.edu.au

49

Combinational Equivalence Checking

- i Binary Decision Diagram (BDD)
- ï For example,

Results

EM: Exact match

FE: Functional equivalence

DM: I/O match only TW: Do not match

Results

ncheung@cse.unsw.edu.au 51 ncheung@cse.unsw.edu.au 52

Future Plan

Conclusion

- i Extensible processors platform enables to address three architectural levels in order to tune for application specific:
 - ñ Inclusion/Exclusion of predefined blocks
 - ñ Instructions extension
 - ñ Parameterizations
- i The goal of the research is to automate the design flow of extensible processor platform.
- ï INSIDE system / MINCE tool