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SoC Design Challenges

1 Application functionality

i Ever changing nature of embedded product

Increasing software content Flexibility

T Power consumption

i Chip area

i Cost

Customizing the architecture to

the specific application Efficiency
(application domain)
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Flexibility vs. Efficiency (Performance)

[

A

ASIC

Performance

ASIP

Flexibility

ncheung@cse.unsw.edu.au 5

Application Specific Processor
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Optimized Processor Design (ASIP)

T Cost
A Small size
1 Performance
A Application extensions
i Productivity
A Rapid hardware
and software
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Extensible Processors Platform

i Represents the state-of-the-art in application specific
instruction-set processor (ASIP)

i Consists of a base processor containing a base
instruction set, plus the capability to customize their
architecture to replace computationally intensive
code segments

i The goal of designing extensible processors is
typically to maximize the performance of an
application, while meeting design constraints
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Extensible Processors Platform

I Enables to address three architectural levels on the
base processor:
A Inclusion/Exclusion of predefined blocks
A Instructions extension
n Parameterizations

I:Instruction R:Instruction Decode E: Execute / ! M: Memory Access | W: Write Back
Fetch / Register Fetch Effective Address | /Branch Complete
Insfruction Decode / ALU/ é Data ROM /
it
Cache Registers Generation
\ Custom / \
Instruction
Predefined Predefined Blocks (e.g. DSP i
= X L N > =
(i.e. 64-bit) Floating-Point Unit)
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Background (Xtensa)
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Xtensa Architecture

Source: www.tensilica.com
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Xtensa Custom Instructions (TIE)
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Xtensais Design Flow

Talored RTL core,
EDW Rehpte,
best suite

o
t lerate in hours! ——

Buhect aplions Lise ihe Ktensa CyEheenigad Lis# standard
and describe PrOCESSOr compiler, techniques and
e functions generator, create...  assembler, O5KIL  inraries for ary fab
via web Interface ﬂil'lil-l'ﬂﬂlr. procass

simudabar

Source: www.tensilica.com
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Extensible Processor (Why?)

Standard Extensible ASIC
Processor Processor (RTL Logic)
Application tuned NO Yes: High-level | Low-level RTL
data paths TIE
Task Control C/C++ C/C++ No
Simulation Fast Fast simulation | RTL simulation:
simulation or or board 100x slower
board
Multiple Engines Limited Simple Possible, but
directed MP hard to design
interface and model
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Example: Digital Video

D1glt&| I'l.lllldﬂ'ﬂ Source: www.tensilica.com
Tensilica provides high-throughput image processing and confrol

EDN Embedded Consumer Benchmark
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Example: Multiple Processors for TOE

TCPAP Officad Engine (TOE)
NEC TOE can achiewe full wire speod by eight paraliel
& two management and dispatch Tensilica cores (Total 10} for
High Performance IP based Network Storage - NAS & IP-SAN

NEC

ISrorane

Mac | Mac |

. i 1
Source: www.tensilica.com gl Eilhr ¥ Ypiari
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Example: Voice Gateway

Vaice Gateway Source: www.tensilica.com
Five Tensilica cores in common development system
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Problems in Automation??

Talored RTL core,

EDA seripis,
best suits

e E

- N [t e [0
eg‘\a“‘ . —
0%°
Qe =

— - ) R
t Herate in hours! S — .
Eileet aplicng Ligs the Ktenga Cuglesnizad Lis# standard
and describe PIOCEREOr compller, tachniguees and
reesr functions generator, creats...  assembber, 05K lorasies for amy fab
via wab Interface dillill-iﬁlﬂlr. process
simudatar

Source: www.tensilica.com

ncheung@cse.unsw.edu.au 20




Generic Design Flow of Extensible
Processor

[ Application in C/C++ J
v

’ Compilation ‘
v

’ Analysis and Profiling ‘
v

Synthesizable RTL of:

Identify: =2 | Instruction Base processor
1) Predefined blocks | 4':} Library Predefined blocks
»| 2) Extensible instructions - Extensible instruptio‘ns
3) Parameter settings il
4
" Explore Define/Select: ™ 5l Generate extensible %
| '-? extensible 1) Predefined blocks processor
= processor 2) Extensible instructions = v v -
4 design space 3) Parameter settings il Proto- Synthesis
I _ typing and tape out
Evaluate: _—
Compiler, Linker, | "? - g
Assembler, Debugger, .i E
Instruction Set Simulator - LT
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Previous Works

I Profiling/Identification
fi [Binh 1998], [Yang 2002], ARC, Xtensa

I Design methodology for different aspects
A [Gupta 2000], [Jain 2001]

I Instruction generation/selection

A [Brisk 1998], [Kastner 2001], [Sun 2003], [Zhao
2002]

I Overall design flow for extensible processors
fi [Kathail 2002], [Lee 2002], [Sun 2002]

1 Vendor and academic
i ARC, Lisatek, Xtensa, ASIP-Meister
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Goal of the Research

I To automate the design flow of extensible
processors platform.

i Given an application and design constraints,
the system configures an extensible
processor that maximizes the performance of
an application while satisfying the design
constraints.
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Proposed Solution

Application in C/C++ ]

Compilation ’

Analysis and Profiling ’

2

Synthesizalj Synthesizable RTL of:

INSIDE / MINCE

1. INSIDE system

i Identifies sections

of code segments which are

suitable for translation to instructions.
A A two-level hierarchy approach.

A A performance estimator.

Fitting Function: 1 Base procq Base processor
g;ftleDrf - Finds suitable code segment : Librar Predefined blocks
to implement as extensible |
instruction 1
Use libraries of v v v | -
pre-configured Define: b/d Select: || MINCE tool jej Generate extensible
processor and 1) P.B. lod 1) P.B. o Match code | |p) __ Processor
instructions to limit 2)E.l st 2) E.l. 1| segmentto [] v ,
the design space 3)P.S. btt| 3) P-S. 1| instruction Proto-  lsijg  Synthesis
1 v - v I [ typing| | t‘yplng o a’nd tape out
Performance Estimation Model |/
1) Information from profiling 1
2) Synthesized information of !
instruction :

e —
ncheung@cse.unsw.edu.au \/ 1

Reduces the design turnaround time significantly.

2. MINCE tool

A Match code segment with pre-synthesized
extensible instruction using combinational

equivalence.

Enhances reusability of the extensible instructions.
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INSIDE system (

Qverview)

Processor 1

Area
Constrainl

Processor, Library

Compile, Simulate, and
Profile

Heuristic Algorithm

(Part 1: for Selecting pre-configured processor)

v

Methodology for

v

Phase 11

Identifying Code Segment, Implementing

Extensible Instruction, and Extending the Instruction Library

v

Phase 111 Heuristic Algorithm

(Part 2: for Selecting pre-designed
extensible instruction)

Pre-designed Extensible 1
L Library :

v

[Phase v
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Execution Time
28

Execution Time Estimation ]

Processor with coprocessor & extensible instructions

Base nr_‘ Pra-dasignad E!tenslhll;—‘




Phase I: Heuristic Algorithm (Part 1)

i For selecting pre-configured processor

i The area delay product, EP;of processor i for a
certain application

1

P=
#CC x Period x Area

Processor | Clock Cycle | Clock Period | Area |EP
P1 12000 6ns 5000 |2.78
P2 8000 8ns 8000 |1.95

ncheung@cse.unsw.edu.au
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Phase II: Identify Code Segments

1 Problem:

A Application has millions of lines of C code, how do
we know which code segment is good for
converting to extensible instruction

i Fitting function
A ldentifies code segments which are suitable for
translation to extensible instructions

A Extracts characteristics of the code segment

ncheung@cse.unsw.edu.au 30

Fitting Function

T The four characteristics:

The frequency of use of a code segment
The number of operands in a code segment
The percentage of integer (short) type operands in all the

o 1 e 1 B 1}

operands

ot

i The fitting function:

FittingFunction = F.U.x

—=xT.0.xB.O.

e

The percentage of bit operations in all the operands

a i the ideal number of operands in the code segment.

ncheung@cse.unsw.edu.au
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Relationship

i Relationship between the fitting function and the
speedup/area ratio of the instruction

0.35 -
0.3
0.25
0.2
0.15
0.1 4

Voice Encoder

—e— FittingFunction

—=— Speedup/area
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Phase lll: Heuristic Algorithm (Part Il)

1 For selecting extensible instructions

i The potential speedup/area ratio, PSAR, of
extensible instruction in processor:

% of #CC xSpeedup
Area x Latency, .

PSAR =

Instruction | % of total Speedup |[Area |Latency | PSAR
clock cycle

Inst 1 13 3x 1500 |[6ns 43333
Inst 2 10 6Xx 2500 |6ns 34286
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Phase IV: Performance Estimation

1 For rapidly estimating the execution time

i The execution time estimation, ETE, for an extensible
processor with a set of selected extensible
instruction:

CC _affected

ETE =JCC _Unaffected +
Speedup

} x Latency,,.
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and system
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Execution Time All the solutions

Results
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Results (Design Turnaround Time)

Results (Pareto Points)

25000 24000 - - . -
Application. Pareto Points Error rate of perf.
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I Mediabench applications
I Speedup of the applications:
A On average 2.03x (up to 7x)
I Hardware overheads:
A On average 25% (up to 72%)
I Pareto points:

A Obtained on average 83% (up to 100%)
A On average within 5% of the execution time
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The Aim of the MINCE

i Matching INstructions using Combinational
Equivalence

I Automatically matching code segments to pre-
synthesized specific instructions.

/I Application in C
int main() {
60
/I Code segment
for (x = 0; x < 100000; x++) {
tmp = a[x] * b[x] << 4;

/I Pre-synthesized specific instructions
state total 32
iclass ei El {out arr, in art, in ars} {in state}

reference El {

wire [31;0] tmp

|
-~ -

total += tmp; assign tmp = TIEmul(art, ars, 1ib0) >> 4;
}'O' o) assign arr = tmp + state;
} Functional
Equivalent
ncheung@cse.unsw.edu.au 41

Motivation

] Application in C/C++ \
¥

’ Compilation
¥

’ Analysis and Profiling ‘
¥

Design Constraints (Performance,
Area, Power Consumption)

—

Identifying the ihotspotsi of the

application through simulation,
profiling, and trace
L

Designed Extensible
Instruction Library

A2
Designing extensible instructions

Explore
extensible
processor

design space

for the ihotspotst
i
Testing/Verifying the functionality,
speedup, area, power consumption

ncheung@cse.unsw.edu.au

of extensible instruction

1 Synthesizable RTL
MINCE tool of base processor
- Matching designed and extensible
extensible instruction instructions

to the code segment

Generate extensible processor ‘

[
Selecting the extensible
instructions based on the design
constraints
¥

No

I

Proto-typing Synthesis

and tape out

MINCE Tool

I An automated tool for matching pre-
synthesized extensible instruction to the
functional equivalence of code segments
using combinational equivalence checking in
the extensible processors platform.
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MINCE Tool

T MINCE consists:
n A translator
A A filtering

n A combinational

Instruction Library

algorithm

Extensible Application

Software in

. C/C++
(Verilog HDL)

equivalence

checking tool

ncheung@cse.unsw.edu.au

Functional equivalence implementation
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Related Works

I Simulation techniques:
[Stadler 1999]

I Graph matching techniques:
[Corazao 1993] [Kang 1995] [Liem 1994] [Shu 1996]

I Equivalence verifications:
[Clarke 2003], [Pnueli 1998], [Semeria 2002]
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Our Contributions

I Enhances reusability of the extensible

instructions.

I MINCE tool is superior to computation-
intensive and error-prone simulation

approaches.

I The usage of functional equivalence checking
ensures that the results are largely
independent of the programming style of the

application.

ncheung@cse.unsw.edu.au
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Phase I: Translator

T The goal of the translator is to convert the application
written in C/C++ to a set of code segment in Verilog
HDL using a systematic approach.

i To reduce the granularity of the application written in
C/C++.

T The translator consists of four steps:
n Separate the application into code segments;
A Compile code segments;
i Convert to register transfer list;
A Map to Verilog HDL file.
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Translator

Application Software written in C/C++

Separate (Step 1)
A 4

Il High-level code segment

int example (int sum, int input1, int input2) {
total = sum + (input1 * input2) >>4;
return total;

}

Compile (Step Il)
v

Il Assembly Code
mutt R6, R1, R2
mov R4, R6

sar R4, %4

add RS5,R4,R3

Convert (Step Ill)

Il Register Transfer List
R6=R1*R2;

R4 =R6;

R4 1=R4>>4;

T
—
]

Instruction |
Library (Verilog HDL)

module mult (product, input1, input2);
[oX¢]
endmodule

module add (sum, in1, in2);
[eX¢]

endmodule

module sfr (outT, inT, amt);
[e)e]

endmodule

\/_\

R5=R3+ R4_1;

module cmpl O ...

.0

\\I_/

I— Map (Step IV)

ncheung@cse.unsw.edu.au

1 Verilog Code
module example (total, sum, input1, input2);
output [31:0] total;
input [31:0] sum, input1, input2;
wire [31:0] r1, r2,r3, r4,r4_1,r5;
wire [63:0] r6;

r1 =input1;

r3 =sum;

mult (6, r1, r2);

r4 =r6;

sfr (r4_1, r4, 4);

add (r5,r3,r4_1);

total =r5;
endmodule

module mult (product, in1, in2);
output [63:0] product;
input [31:0] in1;
input [31:0] in2;

[eX¢)
endmodule

module add (sum, in1, in2);
[eXe)

endmodule

module sfr (out1, in1, amt);
[e}¢]

endmodule
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Phase Il: Filtering Algorithm

i The goal of the filtering algorithm is to eliminate the
unnecessary and complex Verilog HDL file into the
combinational equivalence checking model.

i Verilog HDL files can be pruned as non-match:

Combinational Equivalence Checking

i Binary Decision Diagram (BDD)
I For example,

\\ High-level Code Segment
S=(a+b)*16;

\\ Extensible Instruction

i Differing number of ports; o §”ﬁ
i Differing port sizes; sare 5T
A Insufficient number of base hardware modules to
present complex module.
| Comples Seshile Impleme nbadn - Hendware lwdile | T
Sl 3.2l B, Bhim
MuSiplier i 3.2-bat ) Mmltipher (To-Eath, Adkder. MuSiplesor
Chivision (32-hit) Tluliipfeer [32-hii, Feciprocal
Livision {22-hil ) Sabarncl, sdall
e Kol | A5-hirg Peliilisgelier | 22- i, Addl Sefhant
AT e =TT :'|||||I']|||.'| PR -, Sl Sl
ncheung@cse.unsw.edu.au Cosing §.32-bat ) Mulizplier (12-hiti, Add. Sebinc 49 ncheung@c 50
(,;::;) Simulation vs MINCE (Time on H/W instruction with different kinds of S/W code segment) 250
@ Simulation Technique . 0
120 ETR TR Matching Time
| FE - Functional Equivalent B MINCE (w/o filtering alg.) 205
100 [] 1] |7 Toraly wrong 0o Nothatchat 200 H OMINGE -
= B N O Simulation|
80 = mMINCE
60 ’5150
o
s 115
40 o 105 —
£ - 95
= 100
» I & 75 74
0 - - 1 1 i ‘| ‘|
zlelzlz|zlelzlz|alelalz|alelalz|ale o]z ale 2]z |alelalz 2]k [l gl 2l |2l lalz 50 - 40 40
Instruction 1 Instruction 2 Instruction 3 Instruction 4 Instruction 5 Instruction 6 Instruction 7 Instruction 8 Instruction 9 | Instruction 10 25 0 20 . 20 . 25 15 21 18 25
EM: Exact match 0 L le
FE: Functional equiva|ence Adpcm G721 G721 Gsmencoder Gsmdecoder  MPEG2 Voice
encoder encoder decoder encoder Recognition
DM: I/O match only Application

TW: Do not match
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Future Plan Conclusion

( App"caﬁ? ncicr | I Extensible processors platform enables to
] Compilation | address three architectural levels in order to

v
Analysis and Profiling

tune for application specific:

Synthesizable RTL of:

INSIDE Base processor A Inclusion/Exclusion of predefined blocks
Predefined blocks
system Extensible instructions ﬁ |nStrUCti0nS extension

1

1

1

1

1

: N Generate extensible ﬁ Parameterizations

| Ty i The goal of the research is to automate the
: S e el design flow of extensible processor platform.
1 .

! H ﬁ i INSIDE system / MINCE tool

:

1

1

1
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