CounterFlow
Pipeline
Processor
(CFPP)
Architecture

A Seminar By Marco Della Torre

Scope

[l The CounterFlow Pipeline Processor (CFPP) Concept
B CFPP Architectural Features

Bl Overview of Operations

.Concept, not case study

|l Life after CFPP : Rotary Pipeline

The Brains Behind CFPP

H ' nvented by Robert Sproull and Ivan Sutherland
Il Also known as a Sproull Pipeline Processor

[l Proposed in 1994

.Proposed as a “family” of microarchitectures

Il Microarchitecture : internal processor implementation

CFPP : What’s New?

I.Two pipelines which interact with each other — instructions
flow “up” and results/operands flow “down”

Either Single or multiple instruction issue depending on
implementation

[l Execution may occur out of issue order
l The register file has added significance

[BVery different notion of a pipeline stage

Basic Organisation T
Argmier fis
B Relocated register file 'T' 11.
:.llﬂl.l

. Instructions move “up”

[l Results move “down”

Issue logic at “R” stage
B determines what is sent
down the results pipeline

Insiruciors flow up
-
o |

[l Stages contain storage

Slage |
Prisgiaim toreniis Ssi
irmdiucicn lich

S LN
[l Storage units have validity tags™~ !; E

Fanuks Boay disn

Stage Contents

[l Instruction stages store information in bindings

.Each binding stores the intended operation, register names,
data and a validity bit.

.The validity bit indicates whether the association
(between register name and data) is valid

Stage 0

Instruction Pipeline: Instruction Results

Three bindings

\

Results Pipeline:

Two bindings

Operands and Execution
Il Instruction stages also contain functional units
[l Functional units are spread over the stages.

A stage need not necessarily
contain every type of raiuiion Laish &

Liprian ressf Avigy

™ Rk | abgh
i

functional unit present I[-I =T =TTl =

in the pipeline

anns Dl i
Operands are taken _
M from the “downward”

flowing results pipeline

Operands and Execution

|l Each stage may or may not contain an instruction

.Once executed, the results is stored in the destination binding,
marked valid and can proceed to the register file.

.The result is also entered into “downward” flowing pipeline
binding

Il The downward flowing pipeline is a forwarding mechanism

.At the top of the pipeline, destination bindings are committed to
the register file

B until committed, an instruction in the pipeline can be cancelled

Operands and Execution

I.The register file is the primary source of bindings issued in the
results pipeline, since it provides instruction operands.

.Algorithms for issuing operands must be carefully selected to
maximise throughput

] If the register file does not rovide the correct operands in the
results pipeline, an instruction may stall the pipeline
indefinitely

Bindings are also provided by executed instructions, which
require only local logic to ensure the correct values are passed
down the results pipeline

Pipeline Rules

Il No overtaking : instructions proceed “up” the pipeline in order

.Algorithms for issuing operands must be carefully selected to
maximise throughput

If an instruction's operand bindings are valid and the stage it is
I.in contains the required functional unit for it to execute, it may

do so. Once executed, the result is entered into the destination
binding, which is then marked valid

I.Once an instruction is executed, at least one copy of its
destination binding is entered into the results pipeline

An un-executed instruction cannot pass the last stage able to
|. execute it. Therefore, an un-executed instruction must stay in
the pipeline until executed

When Pipeline Bindings Match

] If a valid result binding matches an invalid source binding, copy
the result value to the source value and mark the source valid.

[If an invalid destination binding matches a valid result binding,
mark the result binding invalid.

If a valid destination binding matches a result binding, copy the

[If an invalid destination binding matches a valid result binding,
mark the result binding invalid.

destination value into the result value and mark the result valid.

Operation Example

PU=101 A=8#+0
PUl=1 HR=4+H
M= 103 D=0 -]
: Tloge | Tnstridion pipe Teault pipe Beesrls

E oo comiadn: A[14] 83T

1 L il] | | Ft b, = soaree names B O o oeg Ak

Operation Example Continued

g Trisfraism oo Rsull g Wevmrks
n| : BN E]] : Rogieiors cominne A 1| CTEIH 20
L]
| 1 1
2 o= 8] &1 I |
T | It = LIEF]| T | Firirch, srad soaron samm A B 1o
Bl Insirnrtson pise Rosul! pipw Hrmnarks
[} 1] 14] 8] 2] Leghaters cvavaaean A 1400078 IH3
T | RN S | lmaan anraps vtk fRslracikn bekow
L | All:=]+ 101 I | Mwsia 't aarap Witk rosul abes
T B|= A=] I |
I l-n"-' 415} - | Totch deluped due 1o cacke s

Operation Example Continued

[Sl T Insfrasfa miw I Irend! pipw T e ks
E | UEE) L | Aegmiess cantain L] CTH D
0i i H2]+ o AFCTE | Cirnar I, 47 eavcuts
1 M | i
1 | PO = 10l | | Peich, semd scurcy nams 0 1o rea Ak

Operation Example Continued

Feage | dnatrwrhion papw [~ Reaslt jipe | Marearks

[_ 1] 14] 572 Megaters cosladu: Ajl4] M HC71) i

1] 15 HaEl 4 27311 15 les=n el

1| " A[] + 2] [B 2cTa] [armer B

Mt | |

F =1 11 Liteial i beekl i banboig, vale

T | F = I | :|-|:. il AR BT L6 Ty
Fron Juslrwctun g o sull gvpe B ks

E | EETSER N H | Riegisiers conisin 1 B T]

0| ®i= A=+ W2 i[5] | et #, caents

I | = cp— 1] | Garwer €, emecats

| P = 10 Frich. sedl segrr pars fo rog Ak

Handling Traps

The instruction that generates the trap sends a special trap
Il binding down the results pipeline, thereby affecting subsequent
instructions

When the special trap binding reaches the “bottom” of the
pipeline, it is interpreted as such by the program control logic

.When setting the trap or branch binding, information about the
instruction can also be held, such as its program counter value

Handling Branches
Il Similar to traps

.When a branch instruction enters the pipeline, it has the
condition code register as a source

.The processor makes a branch prediction and continues to issue
instructions up the pipeline

[l If the prediction is correct, execution is not altered

If a misprediction occurs, the branch instruction sends a
[l wrong-branch-result binding down the results pipeline, which
disables subsequent (now invalid) instructions.

Handling Branches

I.When the result reaches the control logic at the bottom, the
program counter is adjusted to the correct value.

Stages such as the instruction decoder and program control
Il logic can also be separated by stages, with required
communication occuring via the results pipeline.

Last Pipeline Rule : If a result binding is either trap-result or

.Wrong—branch—result, mark the instruction invalid. The
instruction may proceed up the pipeline, but it will have no side
effects on the results pipeline or the register file.

Functional Units
|lDifferent stages can be capable of different types of processing
[l Multiple-cycle operations may be implemented as sidings

Instructions “drop off” the operands and retrieve the result
W further up the pipeline. Can be a functional unit or specialised
coprocessor

I.This procedure removes the need for stalling while waiting for
lengthy operations to complete, if sidings are pipelined

An invalidated instruction using a siding must still retrieve the
Mresults in order to ensure the sidings and pipeline are
coordinated

Functional Units

Iresinuciones flow up

[k memory jmeing
o
&
< _ = = =
E - g o = z > 7 =
= = 3 = o c & E
= =N o = o = o = ;_|
1B 2 : A HIHIEHEE
B < 5 = a o = =
E : 5 £ sllefdsl EL] 8
= = = = =
= a 3 g < =

FResulis Bow Sown

Sourpe binding armes

Register Files and Caches

Multiple register files can be supported, for example a floating
W point register file located after all the floating point functional
units and an integer register file after all integer units

.Any instruction which may alter a register file must execute
before passing it, so the results are not lost

To reduce the latency involved in fetching instructions from
|linstruction register and passing them down the pipeline, register
caches can be used

Im Locating a register cache above the instruction decoder enables
bindings to be filled by the results pipeline

Register Files and Caches

.Source bindings are filled by the register cache if the register
has a valid entry in the cache

B Results which pass the cache are entered as valid

.Any instruction passing the register cache which may alter a
valid entry must invalidate it.

.Traps and mispredicted branch instructions must invalidate
cache entries modified by instructions after the trap or branch

.Rather than keep track of such instructions, the entire cache is
swept clean.

Register Files and Caches

I.Requests for source operands need only be issued when
required registers are not valid in cache

.This reduces the number of operand requests sent to the
register file

.The path from the register file to the decode and register cache
stages is long.

Communications are pipelined and the register cache is
considered as a regular pipeline stage, governed by the
pipeline rules, in order to speed up the connection between
the ends of the pipeline

Il Cache bindings are then maintained by the pipeline rules

Proposed Implementations

Many things can be modified — number of stages, number of
|.sidings, where sidings pick up operands and return results,
caching, etc

Terminology : “Packet” refers to the bindings held at a stage in
|l either the instruction or results pipeline. In the first example,
the packet size of the results pipeline was two

The number and contents of the bindings in the instruction
M pipeline bindings and results pipeline bindings can be varied for
different implementations

If the instruction pipeline has a packet size greater than one
B binding, then the implementation is like a conventional

multi-scalar design
Stage 0

Instruction Results

Proposed Implementations

Local control is used between stages, since only local

Il knowledge is required for transferring data between pipelines
and for stalling instructions

Proposed control described as “elastic” - i.e. the number of
M packets in the pipeline can vary (within limits). Packets can be
removed or added from the result pipeline

To transfer packets from stage to stage, space is required at the
destination stage. Maximum throughput therefore occurs when
a pipeline is half full (No need to wait for the above stage to
copy binding out first)

If the instruction pipeline has a packet size greater than one
Hl binding, then the implementation is like a conventional
multi-scalar design

Overview of Control

~dp

4

e

|H At each stage: ;

E = Empty \

I = Instruction Present _:_'-_,-' "‘H-'EE'_

R = Result Present] drbbrahod

F = Both Instruction and Result o il e

C = Pipeline rules have been "'*"'?H*.I I.-"'- B

enforced and both the | Vo |

instruction and result are ready \ (

to move on. (K] i
|= |

Al = Accept Instruction \ .||I

AR = Accept Result ! EJ

PR = Pass Result 3

Pl = Pass Instruction \ B

Some advantages of CFPP

Il simple, regular structure

|B Register feed-forwarding
W Branches and traps easy to manage
[l Speculative execution and misprediction correction easy

W Flexibility and freedom of design

Some disadvantages of CFPP

Il Complex arbitration

[Register must provide the best contents possible in the result
pipeline bindings to maximise throughput

[Multiple instruction issue adds a large amount of dependency
checking logic

[l stalled instruction can stall the entire pipeline indefinitely

Rotary Pipeline

I.The results pipeline is converted to a loop so that registers
circulate around the stages of the outer pipeline

Pipeline stages are characterised by the functional unit stored

Wl there rather than data held there. Operands are sourced from

the circulating registers

This eliminates the need to stall if an instruction reaches the

Miast stage able to execute it, since there is no longer any last

stage.

.Registers/results are not kept in lock-step, but lapping is not
allowed in order to maintain consistency

[If data dependencies exist, execution is prepared and begins as
soon as the data is available

Rotary Pipeline Organisation

oyclic piplre whoe
resgsler values
Thorda mrci

instrucsion od
teich i

i = ?{-
ey £ R e uchon =
sliuciure 88 \.:i\uini:/.' =

Y

Rotary Pipeline Organisation

Il Only the required registers are passed around the pipeline

.The number of required registers is proportional to the number
of functional units

This means that rotary pipeline processors can be very large
M structures if many functional units are used, since support for

each “loop” must be added

Sequential instructions are issued in the same direction as
register pipeline flow

[} If a register holds condition codes, it can be passed around as a
special type of register to pass the signal to each stage

Rotary Pipeline Execution

|l The pipeline has to be stalled if no appropriate stages

(functional units) are available

Speculative execution can either be achieved by postponing

|l committing the result until the speculation is confirmed or by

writing to temporary registers

.Sequential instructions are issued in the same direction as
register pipeline flow

If an exception is raised, instructions must be cancelled behind

| the current instruction, but care must be taken not to cancel
instructions at another point in the loop which is actually ahead

of the instruction.

Rotary Pipeline Execution

Il 1n order to know when a stage has completed execution, a
completion signal must be maintained, or the executions must
be matched with delays

[l Stage control is implemented in a similar fashion as in the CFPP
example earlier, with states indicating what data is present and
the current execution progress

Rotary Pipeline Aims

B Reduce delays down to only data rates only (remove stalling)
B Localise control

[l Avoid clock synchronisation issues : self-timed logic
M Facilitate multiple instruction issue in a simple fashion

im Exhibit good exception handling and speculative execution
properties

[l Justify large structures required to maintain the architecture

Thank Youl!

References to appear on website....

