
C o u n t e r F l o w
P i p e l i n e
P r o c e s s o r
(C F P P)
A r c h i t e c t u r e
A Seminar By Marco Della Torre

Scope
The CounterFlow Pipeline Processor (CFPP) Concept

CFPP Architectural Features

Overview of Operations

Concept, not case study

Life after CFPP : Rotary Pipeline

The Brains Behind CFPP

Invented by Robert Sproull and Ivan Sutherland

Also known as a Sproull Pipeline Processor

Proposed in 1994

Proposed as a “family” of microarchitectures

Microarchitecture : internal processor implementation

CFPP : What’s New?

Two pipelines which interact with each other – instructions
flow “up” and results/operands flow “down”

Either Single or multiple instruction issue depending on
implementation

The register file has added significance

Execution may occur out of issue order

Very different notion of a pipeline stage

Basic Organisation

Relocated register file

Stages contain storage

Storage units have validity tags

Instructions move “up”

Results move “down”

Issue logic at “R” stage
determines what is sent
down the results pipeline

Stage Contents

Instruction stages store information in bindings

Each binding stores the intended operation, register names,
data and a validity bit.

The validity bit indicates whether the association
(between register name and data) is valid

Instruction Pipeline:
Three bindings

Results Pipeline:
Two bindings

Operands and Execution
Instruction stages also contain functional units

Functional units are spread over the stages.

A stage need not necessarily
contain every type of
functional unit present
in the pipeline

Operands are taken
from the “downward”
flowing results pipeline

Operands and Execution

At the top of the pipeline, destination bindings are committed to
the register file

Until committed, an instruction in the pipeline can be cancelled

Each stage may or may not contain an instruction

Once executed, the results is stored in the destination binding,
marked valid and can proceed to the register file.

The result is also entered into “downward” flowing pipeline
binding

The downward flowing pipeline is a forwarding mechanism

Operands and Execution
The register file is the primary source of bindings issued in the
results pipeline, since it provides instruction operands.

Algorithms for issuing operands must be carefully selected to
maximise throughput

If the register file does not rovide the correct operands in the
results pipeline, an instruction may stall the pipeline
indefinitely

Bindings are also provided by executed instructions, which
require only local logic to ensure the correct values are passed
down the results pipeline

Pipeline Rules

No overtaking : instructions proceed “up” the pipeline in order

Algorithms for issuing operands must be carefully selected to
maximise throughput

If an instruction's operand bindings are valid and the stage it is
in contains the required functional unit for it to execute, it may
do so. Once executed, the result is entered into the destination
binding, which is then marked valid

Once an instruction is executed, at least one copy of its
destination binding is entered into the results pipeline

An un-executed instruction cannot pass the last stage able to
execute it. Therefore, an un-executed instruction must stay in
the pipeline until executed

When Pipeline Bindings Match

If a valid result binding matches an invalid source binding, copy
the result value to the source value and mark the source valid.

If an invalid destination binding matches a valid result binding,
mark the result binding invalid.

If a valid destination binding matches a result binding, copy the
destination value into the result value and mark the result valid.

If an invalid destination binding matches a valid result binding,
mark the result binding invalid.

Operation Example

Operation Example Continued Operation Example Continued

Operation Example Continued Handling Traps
The instruction that generates the trap sends a special trap
binding down the results pipeline, thereby affecting subsequent
instructions

When the special trap binding reaches the “bottom” of the
pipeline, it is interpreted as such by the program control logic

When setting the trap or branch binding, information about the
instruction can also be held, such as its program counter value

Handling Branches

Similar to traps

When a branch instruction enters the pipeline, it has the
condition code register as a source

The processor makes a branch prediction and continues to issue
instructions up the pipeline

If the prediction is correct, execution is not altered

If a misprediction occurs, the branch instruction sends a
wrong-branch-result binding down the results pipeline, which
disables subsequent (now invalid) instructions.

Handling Branches

Stages such as the instruction decoder and program control
logic can also be separated by stages, with required
communication occuring via the results pipeline.

When the result reaches the control logic at the bottom, the
program counter is adjusted to the correct value.

Last Pipeline Rule : If a result binding is either trap-result or
wrong-branch-result, mark the instruction invalid. The
instruction may proceed up the pipeline, but it will have no side
effects on the results pipeline or the register file.

Functional Units

Instructions “drop off” the operands and retrieve the result
further up the pipeline. Can be a functional unit or specialised
coprocessor

This procedure removes the need for stalling while waiting for
lengthy operations to complete, if sidings are pipelined

An invalidated instruction using a siding must still retrieve the
results in order to ensure the sidings and pipeline are
coordinated

Multiple-cycle operations may be implemented as sidings

Different stages can be capable of different types of processing

Functional Units

Register Files and Caches
Multiple register files can be supported, for example a floating
point register file located after all the floating point functional
units and an integer register file after all integer units

Any instruction which may alter a register file must execute
before passing it, so the results are not lost

To reduce the latency involved in fetching instructions from
instruction register and passing them down the pipeline, register
caches can be used

Locating a register cache above the instruction decoder enables
bindings to be filled by the results pipeline

Register Files and Caches
Source bindings are filled by the register cache if the register
has a valid entry in the cache

Results which pass the cache are entered as valid

Any instruction passing the register cache which may alter a
valid entry must invalidate it.

Traps and mispredicted branch instructions must invalidate
cache entries modified by instructions after the trap or branch

Rather than keep track of such instructions, the entire cache is
swept clean.

Register Files and Caches

Requests for source operands need only be issued when
required registers are not valid in cache

This reduces the number of operand requests sent to the
register file

The path from the register file to the decode and register cache
stages is long.

Communications are pipelined and the register cache is
considered as a regular pipeline stage, governed by the
pipeline rules, in order to speed up the connection between
the ends of the pipeline

Cache bindings are then maintained by the pipeline rules

Proposed Implementations
Many things can be modified – number of stages, number of
sidings, where sidings pick up operands and return results,
caching, etc

Terminology : “Packet” refers to the bindings held at a stage in
either the instruction or results pipeline. In the first example,
the packet size of the results pipeline was two

The number and contents of the bindings in the instruction
pipeline bindings and results pipeline bindings can be varied for
different implementations

If the instruction pipeline has a packet size greater than one
binding, then the implementation is like a conventional
multi-scalar design

Proposed Implementations

Local control is used between stages, since only local
knowledge is required for transferring data between pipelines
and for stalling instructions

Proposed control described as “elastic” - i.e. the number of
packets in the pipeline can vary (within limits). Packets can be
removed or added from the result pipeline

To transfer packets from stage to stage, space is required at the
destination stage. Maximum throughput therefore occurs when
a pipeline is half full (No need to wait for the above stage to
copy binding out first)

If the instruction pipeline has a packet size greater than one
binding, then the implementation is like a conventional
multi-scalar design

Overview of Control

At each stage:

E = Empty
I = Instruction Present
R = Result Present
F = Both Instruction and Result
C = Pipeline rules have been
enforced and both the
instruction and result are ready
to move on.

AI = Accept Instruction
AR = Accept Result
PR = Pass Result
PI = Pass Instruction

Some advantages of CFPP

Simple, regular structure

Branches and traps easy to manage

Register feed-forwarding

Speculative execution and misprediction correction easy

Flexibility and freedom of design

Some disadvantages of CFPP

Complex arbitration

Multiple instruction issue adds a large amount of dependency
checking logic

Register must provide the best contents possible in the result
pipeline bindings to maximise throughput

Stalled instruction can stall the entire pipeline indefinitely

Rotary Pipeline

The results pipeline is converted to a loop so that registers
circulate around the stages of the outer pipeline

This eliminates the need to stall if an instruction reaches the
last stage able to execute it, since there is no longer any last
stage.

Registers/results are not kept in lock-step, but lapping is not
allowed in order to maintain consistency

If data dependencies exist, execution is prepared and begins as
soon as the data is available

Pipeline stages are characterised by the functional unit stored
there rather than data held there. Operands are sourced from
the circulating registers

Rotary Pipeline Organisation

Rotary Pipeline Organisation

Only the required registers are passed around the pipeline

The number of required registers is proportional to the number
of functional units

This means that rotary pipeline processors can be very large
structures if many functional units are used, since support for
each “loop” must be added

Sequential instructions are issued in the same direction as
register pipeline flow

If a register holds condition codes, it can be passed around as a
special type of register to pass the signal to each stage

Rotary Pipeline Execution

The pipeline has to be stalled if no appropriate stages
(functional units) are available

Speculative execution can either be achieved by postponing
committing the result until the speculation is confirmed or by
writing to temporary registers

Sequential instructions are issued in the same direction as
register pipeline flow

If an exception is raised, instructions must be cancelled behind
the current instruction, but care must be taken not to cancel
instructions at another point in the loop which is actually ahead
of the instruction.

Rotary Pipeline Execution

In order to know when a stage has completed execution, a
completion signal must be maintained, or the executions must
be matched with delays

Stage control is implemented in a similar fashion as in the CFPP
example earlier, with states indicating what data is present and
the current execution progress

Rotary Pipeline Aims

Reduce delays down to only data rates only (remove stalling)

Localise control

Avoid clock synchronisation issues : self-timed logic

Facilitate multiple instruction issue in a simple fashion

Exhibit good exception handling and speculative execution
properties

Justify large structures required to maintain the architecture

Thank You!

References to appear on website….

