

Outline

- ☐ Adlemanís experiment
- □ Cutting Edge Technologies
- □ Pros and Cons
- Conclusion

What is DNA?

- DNA stands for <u>Deoxyribonucleic Acid</u>
- DNA represents the genetic blueprint of living creatures
- DNA contains i instructionsi for assembling cells
- Every cell in human body has a complete set of DNA
- DNA is unique for each individual

Double Helix

2

- ì laddersî
 complementary base pairs
 Adenine & Thymine
 Guanine & Cytosine
- Two strands are held together by weak hydrogen bonds between the complementary base pairs

Source: i Human Physiology: From Cells to System 4th Ed.î, L. Sherwood, Brooks/Cole, 2001, C-3

Sequence to indicate the start of an instruction Instruction that triggers Hormone injection Instruction for hair cells

- Instructions are *coded* in a sequence of the DNA bases
- A segment of DNA is exposed, transcribed and translated to carry out instructions

Original DNA Source: iHuman Physiology: From Cells to System 4th Ed.î, L. Sherwood, Brooks/Cole, 2001, C-5

Protein Synthesis

■ DNA \rightarrow RNA \rightarrow Proteins \rightarrow actions

Source: iHuman Physiology: From Cells to System 4th Ed.î, L. Sherwood, Brooks/Cole, 2001, C-6

Can DNA Compute?

- DNA itself does not carry out any computation.
 It rather acts as a massive memory.
- BUT, the way complementary bases react with each other can be used to compute things.
- Proposed by Adelman in 1994

Outline

- ✓ Introduction to DNA
- Adlemanís experiment
- □ Cutting Edge Technologies
- Pros and Cons
- Conclusion

Adlemanís Experiment (Contíd)

- Solution by inspection is:
 Darwin → Brisbane → Sydney → Melbourne → Perth → Alice Spring
- BUT, there is no deterministic solution to this problem, i.e. we must check all possible combinations.

Adlemanís Experiment

Hamilton Path Problem
 (also known as the travelling salesperson problem)

Is there any Hamiltonian path from Darwin to Alice Spring?

Adlemanís Experiment (Contíd)

1. Encode each city with complementary base - *vertex molecules*

Sydney - TTAAGG

Perth - AAAGGG

Melbourne - GATACT

Brisbane - CGGTGC

Alice Spring ñ CGTCCA

Darwin - CCGATG

Adlemanís Experiment (Contíd)

Encode all possible paths using the complementary base ñ edge molecules Sydney → Melbourne ñ AGGGAT Melbourne → Sydney ñ ACTTTA Melbourne → Perth ñ ACTGGG etcÖ

Adlemanís Experiment (Contíd)

3. Marge vertex molecules and edge molecules. All complementary base will adhere to each other to form a long chains of DNA molecules

Adlemanís Experiment (Contíd)

• The solution is a double helix molecule:

Operations

- Melting breaking the weak hydrogen bonds in a double helix to form two DNA strands which are complement to each other
- Annealing reconnecting the hydrogen bonds between complementary DNA strands

Operations (Contíd)

- Merging mixing two test tubes with many DNA molecules
- Amplification
 DNA replication to make many copies of the original
 DNA molecules
- Selection
 elimination of errors (e.g. mutations) and selection of
 correct DNA molecules

Outline

- ☑ Introduction to DNA
- ✓ Adlemanís experiment
- □ Cutting Edge Technologies
- □ Pros and Cons
- Conclusion

DNA Chip

Source: Stanford Medicine Magazine, Vol 19, 3 Nov 2002 http://mednews.stanford.edu/stanmed/2002fall/translational-dna.html

Chemical IC

Source: Tokyo Techno Forum 21, 21 June 2001 http://www.techno-forum21.jp/study/st010627.htm

The Smallest Computer

- The smallest programmable DNA computer was developed at Weizmann Institute in Israel by Prof. Ehud Shapiro last year
- It uses enzymes as a program that processes on on the input data (DNA molecules).
- http://www.weizmann.ac.il/mathusers/lbn/new_p ages/Research_Biological.html

Outline

- ☑ Introduction to DNA
- ✓ Adlemanís experiment
- Pros and Cons
- Conclusion

Pros and Cons

- + Massively parallel processor

 DNA computers are very good to solve Nondeterministic Polynomial problems such as

 DNA analysis and code cracking.
- + Small in size and power consumption

Pros and Cons (Contíd)

- Requires constant supply of proteins and enzymes which are expensive
- Errors occur frequently a complex selection mechanism is required and errors increase the amount of DNA solutions needed to compute
- Application specific
- Manual intervention by human is required

Outline

- ✓ Introduction to DNA
- ✓ Adlemanís experiment
- **☑**Cutting Edge Technologies
- ✓ Pros and Cons
- **Conclusion**

References

- ì Molecular Computation of Solutions to Combinatorial **Problems**î, L.M. Adleman, Science Vol.266 pp1021-1024, 11 Nov 1994
- ì Computing With Cells and Atoms ñ an introduction to quantum, DNA and membrane computingî, C.S. Calude and G. Paun, Taylor & Francis, 2001
- ì The Cutting Edge Biomedical Technologies in the 21st Centuryî, Newton, 1999
- ì **Human Physiology**: From Cells to Systems 4th Ed.î, L. Sherwood, Brooks/Cole, 2001

Conclusion

- It will not replace the current computers because it is application specific, but has a potential to replace the high-end research oriented computers in future.
- Nanotechnology?

