COMP 4211
Seminar Presentation

Based On: Computer Architecture
A Quantitative Approach

by Hennessey and Patterson
Presenter : Feri Danes

What is Exception?

= |/O device request

= Invoking anjoperating system service from a user program
= Tracing instruction execution

= Breakpoint (programmer-requested interrupt)

= Integer arithmetic overflow

= P arithmetic anomaly

= Page Fault(not in main memory)

= Misaligned memory access (if alignment required)
= Memory protection violation

= Using an undefined or unimplemented instruction

= Hardware malfunctions

= Power failure

Outline

« Exceptions Handling

« Floating Points Operations

« Case Study: MIPS R4000 Pipeline
« Case Study: MIPS R4300 Pipeline

What happens during an exception?

« An exception occurs
« Operating system trap
« Saving the PC where the exception

happens

« Save the operating system state
« Run exception code
* Resume the last instruction before it traps

or terminate the program

How! does this influence the hardware?

« Unpipelined implementations
= Occur within instructions
= Restartable

* Pipelined implementations

= Preserves the CPU state by stalling the instruction following the
exception source

Precise Exceptions

lif the pipeline can be stopped so that the
instructions just the faulting instruction are
completed and the faulting instruction can
be restarted from scratchi

Exception in Pipelined architecture

« Force a trap instruction into the pipeline on

the next |E

« Flush the pipeline for the faulting

instruction and all instructions that follows

« After exception handling routine finishes

restore the PC of the saved PC and delay
branches if exsists

Exceptions in MIPS

Pipeline stage Problem exceptions occurring

Page fault on IF, misaligned memory
access, memory protection violation

Undefined or illegal opcode

Arithmetic exception

Page fault on data fetch, misaligned
memory access, memory violation
protection

None

Exceptions in MIPS

* Precise exceptions

« Exception status
vector

* eg:

= Data fault on LD

= Page fault on DADD

Floating Points Operation

There are four separate functional units that we can
assume to support Function Point operations:

Integer Unit

FP and integer multiplier
FP adder

FP and integer divider

Function Point Operations

Frimegs Taigy

CIUJ _EEEI
1

rH-'rln.l-'l:-.ul'

Hazards

« Structural hazards on the FP and integer
divider

« Structural hazards on WB

« WAW: because of out of order completion

* Precise exception is harder to maintain

* Increase the number of RAW hazards

Structural Hazard

« Stall the instruction that can cause
structural hazard in the ID stage

« Stall'the instruction when it enters the
MEM or WB stage

Structural Hazard

Instruction:

1

MUL.D F0,F4,F6

IF

00000000,

000606000606.

ADD.D F2,F4,F6

000060000.

00000000,

D) F2,0(R2)

RAW:' IHazard

Instruction 1 2

8

4 5 6 7 8 9 10 11 12

L.D FOF4,F6 IF D EX MEM WB

MUL.D FO,F4,F6

IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM

ADD.D F2,F0,F8

IF

stall 1D stall stall stall stall Stall Sielll Al

A3 A4 MEM

SD F2,0(R2)

IF stall Stall stall stall Stall Stall ID

el stall Sielll MEM

WAW:' Hazard

Instruction:

MUL.D F0,F4,F6

00060006606.

0000000

ADD.D F2,F4,F6

0006600606

LD F2,0(R2)

Forwarding Unit

Can be implemented by checking the
destination register in these following
registers:

« EXIMEM

« 14/MEM

« M7/MEM

« D/MEM

« MEM/WB

WAW' Hazard

« Delay the issue of Load instruction until

the add instruction reach the MEM stage

* Prevent the add! instruction to write back to

register

Viaintaining Precise Exceptions

« Consider the following sequence of code

« DIV.D FO,F2,F4
= ADD.D F10,F10,F8
= SUB.D' F12,F12,F14

* Consider this following scenario

= ADD.D and SUB.D finish before DIV.D

= SUB.D causes floating point exception after
ADD.D has been completed but not DIV.D

= Imprecise exception

Viaintaining Precise Exception MIPS EP Periormance

* lgnore

« buffer the result of an operation until all' operation that
were issued earlier are complete
= History file
 future file

« |_et exceptions to be imprecise but with state information

= save the instruction that precede the completed instruction and
run those instructions before restarting the execution

* Guarantee that no instruction that precede the issuing
instruction can be completed without exception before
issuing that instruction

£ S0 |ttt S PSS righis Se-iareeed

Case Study MIPS R4000

« Eight stages pipeline

« Additional pipeline is allocated for cache
access

« Often called as superpipelining

I F000 Eleaviar Soencs (USRAL AR rights s

R4000 Pipeline

« |E--Eirst halfi ofi instruction fetch, PC selection and
initiation of instruction cache access

« |S--Second half instruction fetch, complete instruction
cache access

* RF--Instruction decode and register fetch and instruction
cache hit detection

« EX--Execution includes effective address calculation,

ALU operation, branch target calculation and branch
condition calculation

« DF--Data fetch first half:

« DS--Second half data fetch completion of data cache
access

« TC--Tag check, determine whether the data cache
access hit

« WB--Write Back for loads and register-register operation

Branch Delay.

RAW:' Hazard

Branch Delay.

* Branch taken

= 1 Delay Slot + 2 stall

* Brach not taken

= 1 Delay Slot

Note : Branch predicted not taken policy is used
for the 2 out 3 cycles of branch delay

Floating Peint Pipeline

)]

-k

®
Q

Functional
Unit

Description

Floating Point Instruction

EP'Instruction Latency, Initiation Pipe stages

Interval

EP Adder

Mantissa ADD stage

Add, Subtract 4 3 U,S+A A+R,R+S

FP Divider

Divide pipeline stage

8 4 U,E+M,M,M,M,N,N+A,R

FP Multiplier

Exception test stage

36 35 U,A R,D2” D+A,D+R,D+A D+R,A,R

FP Multiplier

First stage of multiplier

Square Root 111 UE,(A+R) 108 A R

FP Multiplier

Second stage of multiplier

1 usS

FP Adder

Rounding stage

Absolute Value 1 U,S

FP Adder

Operand shift stage

FP Compare 2

ClwoAoZ2|Z MO >0

Unpack FP number

Structural Hazard

Operatio
n

Issuef/stall

Multiply

Issue

Add

Issue

Issue

Siell]

Stall

Issue

Issue

Performance

Some Definition

Load stalls: Delays arising from the use of a
load result 1 or 2 cycles after the load

Branch stalls: 2 cycle stall on every taken
branch plus unfilled or canceled branch delay
slots

FP result stalls: Stalls because of RAW
hazard for an FP operand

FP structural stalls: Delays because of
issue restrictions arising from conflicts for
functional units in the FP pipeline

Performance

PP R

SFECHT o

o ARET E et Siesrnces (LSRR AU sl PRt

MIPS R4300

« five-stage pipeline

* 64-bit processor

« used in embedded system

« implementation FP operations by

extending the pipeline length in the Ex
stage

Bibliegraphy.

Hennesy,J.L and Patterson,D.A, iComputer
Architecture A Quantitative approachi,
Appendix A, Morgan Kaufmann
Publisher,USA,2003

