Power-Aware Microprocessors

Emily Chan

Paper Yu Bai and R. Iris Bahar. A Dynamically Reconfigurable Mixed In-Order/Out-of-Order Issue Queue for Power-Aware Microprocessors.

Outline

- Introduction
- Focus of the paper

 Overview of Approaches Taken Related Work Done Implementations Experimental Results Conclusion COMP4211 Advance Computer Architecture

Two Major Issues

- Battery Life ñ Mobile phones, Laptops and any other portable equipments.

2004/4/29

OMP4211 Advance Computer Architecture

6

What is the problem?

- Different applications may vary widely in:
 - Degree of instruction-level parallelism (ILP)
 - Branch behavior
 - Memory access behavior
 - → Datapath resources not optimally utilized by all applications

HOWEVER, Still consuming power!!!!

How can we solve the problem?

Golden Rule:

A good design strategy should be flexible enough to dynamically reconfigure available resources according to the program's needs.

2004/4/29

Outline

- Introduction
- Focus of the paper
- Overview of Approaches Taken
- Related Work Done
- Implementations
- Experimental Results
- Conclusion

Focus of the paper

- ìReconfigurabilityî of the issue queue in out-of-order superscalar processors
 - → a large source of the total power dissipation
- Believe it or Not: For Alpha 21264, 46% of the total power goes to the issue logic!

COMP4211 Advance Computer Architecture

Outline

- Introduction
- Focus of the paper

- Overview of Approaches Taken
- Related Work Done
- Implementations
- Experimental Results
- Conclusion

Overview of Approaches Taken

- Partition issue queue into several sets (FIFOs) -- Why?
- Only instructions at the head of each FIFO are visible to the request and selection / arbitration logic -- Why?
- Each FIFO issues in-order though the overall issue logic is still out-of-order -- What are the benefits?

2004/4/29

Outline

- Introduction
- Focus of the paper
- Overview of Approaches Taken

- Related Work Done
- Implementations
- Experimental Results
- Conclusion

Related Work Done

- Hardware dynamically monitors performance
 - → disabling part of integer and/or floating point pipelines
- Varying the instruction issue width to allow disabling of a cluster of function units
- Dynamically reducing the number of active entries in the instruction window

COMP4211 Advance Computer Architecture

Drawbacks

- No way to tell whether an instruction is ready to be issued or not and all instructions are visible to the selection and wake up logic
 - → power inefficient
- Dynamically adjusting the issue queue size
 - → narrows the scope of instructions available for exposing ILP

Palacharlaís approach

- Uses FIFOs as well
- Simplifies wake up and selection logic which puts chains of dependent instructions into FIFO buffers
- Issues instructions from multiple buffers in parallel

Palacharlaís Drawbacks

- Uses a single fixed-sized data structure
 - → not always beneficial for different applications

Why is data structure such an important issue?

COMP4211 Advance Computer Architecture

Performance Analysis

- Use a 1-entry FIFO configuration as a base case, on average:
 - 2-entry FIFO → 3% drop
 - 4-entry FIFO → 14% drop
 - 8-entry FIFO → 30% drop
 - 64-entry (a single FIFO) → 84% drop
- For *li*, performance improves up to 4-entry FIFO -> avoids executing wrong path instructions effectively

Outline

Introduction

Focus of the paper

Overview of Approaches Taken

Related Work Done

- Implementations
- Experimental Results
- Conclusion

COMP4211 Advance Computer Architecture

Implementations

Scheme # 1 Completely disable some under-utilized FIFOs in the issue queue according to feedback from performance monitor (hardware)

Pro: By completely disabling a FIFO → any signals associated disabled → more power savings

Con: Shrinking the overall size of the issue queue → Limit exposure to potential ILP → not suitable for Floating Point execution

COMP4211 Advance Computer Architecture

Implementations

- Scheme # 2
 - vary the number and size of the FIFOs simultaneously according to feedback from performance monitor
 - size of FIFOs increases while the number of FIFOs decreases
 - retain same number of issue queue entries at all times but the queue appears to be smaller

Pro: more flexibility in exposing potential ILP

Con: entries are only made invisible → associated signals still enabled > less power savings

Implementations

- When performance is suffering
 - → a large fraction of the issue queue is turned back on (Scheme # 1) or made visible (Scheme # 2) to the request and selection logic

Pipeline Organization Up to 6 instructions each cycle Branch Prediction Control H/W Data Cache Monitors & Controls Figure 2. Pipeline organization. 2004/4/29

Two Major Components

- Issue queue
 - a set of reconfigurable FIFOs
 - insert at the tail: issue from head of a FIFO
 - only heads of FIFOs are visible
- Hardware performance monitors
 - determine optimal issue queue configuration
 - statistics gathered over a fixed interval of cycles called a cycle window (1024 cycles)

Issue Queue Design

Scheme # 1

Scheme # 1 Design

- When under-utilized, disable a FIFO
- FIFO must be drained of all valid entries before being disabled
- Reduces number of instructions bidding for an issue slot

 power saving in the wake-up and selection logic!
- Not having to update the ready status of the disabled instruction entries → power saving!

Issue Queue Design

Scheme # 2

Figure 4. IQ scheme using variable sized FIFOs.

2004/4/29

Scheme # 2 Design

- Vary size and number of FIFOs simultaneously
- Assumed no cycle overhead in changing from one configuration to another since each instruction has a set of arbiter enable signals indicating its arbiter assignment
- Arbiter signals are disabled except for heads of FIFO

 power saving!
- Power savings only when reduced activities in the request and selection logic

Allocations of instructions into FIFOs

- Important that most of the ready instructions are at the heads of FIFOs.
 - → use a **dependency-based** strategy
 - Attempt to place an instruction in the same FIFO as one or both of its source dependencies

Dependency-based Strategy

- If ready → new empty FIFO
 - → if no empty FIFO then

- If one pending operand
 - → steer to the same FIFO as the producer if possible
 - → if fail, try a new empty FIFO
 - if no empty FIFO then

Dependency-based Strategy

- If two pending operands
 - → implement a **Last Operand Predictor** (LOP) to predict which of two operands will become available later
 - → try the late arrived producer first
 - if fail, try the other producer
 - → if fail again, try a new empty FIFO
 - if no empty FIFO then

Hardware Performance Monitors

- At the end of each cycle window, determine which operating mode next
- A combination of different monitoring techniques used → better control

COMP4211 Advance Computer Architecture

Monitoring Techniques

- Monitoring IPC
 - low IPC → disable / hide part of the issue queue and enter low-power mode (LPM)
- Detecting variations in IPC
 - if issue and commit rates vary significantly -> a high branch misprediction -> decrease the number of FIFOs

Monitoring Techniques

- Performance degradation
 - drop in IPC between two cycle windows exceeds a threshold value > back to higher power mode
- Monitoring ready instructions
 - too many stalls -> increase the number of **FIFOs**
 - very little stalls -> decrease the number of **FIFOs**

Monitoring Techniques

- Issue queue usage
 - low occupancy → reduce the number of **FIFOs**
- Non-Critical Instructions
 - if no instruction is placed behind a ready instruction by the time it is removed from the queue -> non-critical instruction
 - delaying such ready instruction wonit hurt
 - too many non-critical instructions → reduce the number of FIFOs

Power Estimations

- Extrapolated from available Alpha 21264 power estimates
- Different issue queue designs but both use an out-of-order issuing scheme
- Assume issue logic = register file +
 register mapping + issue queue
- Issue queue = register scoreboard + request logic + arbiters

2004/4/29

COMP4211 Advance Computer Architecture

37

Power Estimations

- Estimates:
 - arbitration logic → 60% of issue queue power
 - request logic → 15% of issue queue power
 - register scoreboard and rests → remaining 25%
- Reminder: Reduce numbers of FIFO →
 reduce activity on the arbiter enable
 signals, and the request logic and signals
 → power savings!

2004/4/29

COMP4211 Advance Computer Architectur

35

Request Logic

Figure 5. Request logic for one row of the scoreboard with modifications shown in gray. Taken from [4].

COMP4211 Advance Computer Architectu

3

Request Logic

- Only request lines of heads of FIFOs are enabled → be precharged!
- Use the FIFO_head signal to achieve this
- REQ L asserted iff FIFO head asserted
- Conventional out-of-order issue queue:
 precharges every request lines each cycle!
- Execution assignment info (state_cond and Ex_cond) updated no matter what → save power only by completely disabling the FIFO (Scheme # 1)

COMP4211 Advance Computer Architecture

4

Arbitration Logic

- Precharge only the grant lines of heads of FIFO
- Assume power used in arbitration logic is directly proportional to the number of active FIFOs
 - → save more power by disabling all the grant lines associated with the unused issue slots

2004/4/29

COMP4211 Advance Computer Architecture

41

Register Scoreboard Logic

- Track data dependencies among instructions in the issue queue
- Necessary to update information for each issue queue entries unless a FIFO is completely disabled → only Scheme # 1
 can achieve power saving

2004/4/29

COMP4211 Advance Computer Architectur

40

Experimental Methodology

- Uses SIMPLESCALAR
- Original Register Update Unit (RUU) = instruction window + array of reservation stations + reorder buffer (ROB)
- RUU spilt into ROB and issue queue (IQ)
 more accurate modeling of current and next generation processors
- ROB → order instructions according to their input dependencies before entering the queue

Complete Configuration

Inst. Window 256-entry LSQ, 512-entry ROB 64-entry IQ Machine Width Fetch Queue FUs & Latency 8 Int add (1), 2 Int mult/div (3/20) 4 FP add (2), 2 FP mult/div/sqrt (4/12/24) 4 Load/Store (1) L1 Icache L1 Dcache L2 Cache Memory Branch Pred. Configuration 256-entry LSQ, 512-entry ROB 64-entry IQ 6-wide fetch, issue, commit 8 8 Int add (1), 2 Int mult/div (3/20) 4 FP add (2), 2 FP mult/div/sqrt (4/12/24) 4 Load/Store (1) 32KB 2-way; 32B line; 1 cycle 256KB 4-way; 64B line; 6 cycle 128 bit-wide; 20 cycles on hit, 50 cycles on page miss 4k 2lev + 4k bimodal + 4k meta 6 cycle mispred. penalty	Table 1. Processor resources					
Machine Width Fetch Queue FUs & Latency 8 Int add (1), 2 Int mult/div (3/20) 4 FP add (2), 2 FP mult/div/sqrt (4/12/24) 4 Load/Store (1) L1 Icache L1 Dcache L2 Cache Memory Branch Pred. 64-entry IQ 6-wide fetch, issue, commit 8 8 Int add (1), 2 Int mult/div (3/20) 4 FP add (2), 2 FP mult/div/sqrt (4/12/24) 4 Load/Store (1) 32KB 2-way; 32B line; 1 cycle 256KB 4-way; 64B line; 6 cycle 128 bit-wide; 20 cycles on hit, 50 cycles on page miss 4k 2lev + 4k bimodal + 4k meta	Parameter	Configuration				
Machine Width Fetch Queue FUs & Latency 8 Int add (1), 2 Int mult/div (3/20) 4 FP add (2), 2 FP mult/div/sqrt (4/12/24) 4 Load/Store (1) 32KB 2-way; 32B line; 1 cycle L1 Dcache L2 Cache Memory 128 bit-wide; 20 cycles on hit, 50 cycles on page miss 4k 2lev + 4k bimodal + 4k meta	Inst. Window	256-entry LSQ, 512-entry ROB				
Fetch Queue FUs & Latency 8		64-entry IQ				
FUs & Latency 8 Int add (1), 2 Int mult/div (3/20) 4 FP add (2), 2 FP mult/div/sqrt (4/12/24) 4 Load/Store (1) 32KB 2-way; 32B line; 1 cycle L1 Dcache L2 Cache L2 Cache Memory 128 bit-wide; 20 cycles on hit, 50 cycles on page miss Branch Pred. 8 Int add (1), 2 Int mult/div (3/20) 4 FP add (2), 2 FP mult/div/sqrt (4/12/24) 4 Load/Store (1) 32KB 2-way; 32B line; 1 cycle 256KB 4-way; 64B line; 6 cycle 128 bit-wide; 20 cycles on hit, 50 cycles on page miss 4k 2lev + 4k bimodal + 4k meta	Machine Width	6-wide fetch, issue, commit				
4 FP add (2), 2 FP mult/div/sqrt (4/12/24) 4 Load/Store (1) 2KB 2-way; 32B line; 1 cycle 32KB 2-way; 32B line; 1 cycle 32KB 2-way; 32B line; 1 cycle 256KB 4-way; 64B line; 6 cycle Memory 128 bit-wide; 20 cycles on hit, 50 cycles on page miss 4k 2lev + 4k bimodal + 4k meta	Fetch Queue	8				
4 Load/Store (1) L1 Icache L1 Dcache L2 Cache Memory Branch Pred. 4 Load/Store (1) 32KB 2-way; 32B line; 1 cycle 32KB 2-way; 32B line; 1 cycle 256KB 4-way; 64B line; 6 cycle 256KB 4-way; 64B line; 1 cycle 256KB 4-w	FUs & Latency	8 Int add (1), 2 Int mult/div (3/20)				
L1 Icache L1 Dcache L2 Cache Memory Branch Pred. 32KB 2-way; 32B line; 1 cycle 32KB 2-way; 32B line; 1 cycle 32KB 4-way; 64B line; 6 cycle 256KB 4-way; 64B line; 6 cycle 128 bit-wide; 20 cycles on hit, 50 cycles on page miss 4k 2lev + 4k bimodal + 4k meta		4 FP add (2), 2 FP mult/div/sqrt (4/12/24)				
L1 Deache 32KB 2-way; 32B line; 1 cycle L2 Cache 256KB 4-way; 64B line; 6 cycle Memory 128 bit-wide; 20 cycles on hit, 50 cycles on page miss Branch Pred. 4k 2lev + 4k bimodal + 4k meta		4 Load/Store (1)				
L2 Cache 256KB 4-way; 64B line; 6 cycle Memory 128 bit-wide; 20 cycles on hit, 50 cycles on page miss Branch Pred. 4k 2lev + 4k bimodal + 4k meta	Ll Icache	32KB 2-way; 32B line; 1 cycle				
Memory 128 bit-wide; 20 cycles on hit, 50 cycles on page miss Branch Pred. 4k 2lev + 4k bimodal + 4k meta	L1 Dcache	32KB 2-way; 32B line; 1 cycle				
50 cycles on page miss 4k 2lev + 4k bimodal + 4k meta	L2 Cache	256KB 4-way; 64B line; 6 cycle				
Branch Pred. 4k 2lev + 4k bimodal + 4k meta	Memory	128 bit-wide; 20 cycles on hit,				
		50 cycles on page miss				
6 cycle mispred. penalty	Branch Pred.	4k 2lev + 4k bimodal + 4k meta				
		6 cycle mispred. penalty				
BTB 1K entry 4-way set assoc.	BTB	1K entry 4-way set assoc.				
RAS 32 entry queue	RAS	32 entry queue				
ITLB 64 entry fully assoc.	ITLB	64 entry fully assoc.				
DTLB 64 entry fully assoc.	DTLB	64 entry fully assoc.				

2004/4/29

COMP4211 Advance Computer Architecture

COMP4211 Advance Computer Architecture

4

Outline

- Introduction
- Focus of the paper
- Overview of Approaches Taken
- Related Work Done
- Implementations
- Experimental Results
- Conclusion

2004/4/29

COMP4211 Advance Computer Architecture

45

Specific Monitor Technique for Scheme # 1

- Disable one FIFO when either (ordered according to relative importance):
 - less than o of ready instructions are stalled;
 - less than 2/3 of the FIFOs are actually used on average;
 - more than 15% of dispatched instructions are non-critical;
 - current IQ occupancy rate is less than ° of the average occupancy rate

2004/4/29

COMP4211 Advance Computer Architecture

16

Specific Monitor Technique for Scheme # 1

- Enable one FIFO when either (ordered according to relative importance):
 - current issue rate (IPCissue) drops by more than 10% compared to the last cycle window executed in FPM;
 - current IPC_{issue} drops by more than 15% compared to the previous cycle window;
 - more than 1/3 of ready instructions are stalled

Results for Scheme # 1

Table 2. Results for Scheme #1.								
	Avg. #	64-entry IQ						
		16, 4-entry FIFOs		64, I-entry FIFOs				
Benchmarks	of FIFOs	Power		Power				
		Saving	Δ IPC	Saving	Δ IPC			
compress	7.5	51.4%	3.6%	75.9%	3.6%			
gcc	11.1	29.8%	3.5%	65.2%	3.9%			
go	11.7	25.8%	3.7%	63.2%	4.5%			
ijpeg	13.4	15.8%	2.4%	58.3%	5.1%			
li	12.2	22.9%	5.8%	61.8%	2.7%			
perl	12.8	19.6%	3.3%	60.1%	8.3%			
average	11.5	27.6%	3.7%	64.1%	4.7%			

2004/4/29

Comments on Scheme # 1

- Only applied to integer benchmarks
- Reasonable job dynamically changing the 16 4entry FIFOs
- But not as good for the non-FIFO (64 1-entry) scheme; but still for compress → 75% power saving with only 3.6% drop in performance
- Average best cases:
 - 16 4-entry FIFOs → 27.6% power saving with 3.7% drop in performance
 - 64 1-entry FIFOs → 64.1% power saving but 4.7% drop in performance (not as impressing)

2004/4/29

COMP4211 Advance Computer Architecture

40

Specific Monitor Techniques for Scheme # 2

- Halves the number of FIFOs & doubles the size of each FIFO when either (ordered according to relative importance):
 - (IPCissue ñ IPCcommit) > 1.0;
 - less than 3% of ready instructions are stalled;
 - IPC_{issue} < 2.7 (threshold lowered by 0.2 for each successive reduction in number of FIFOs);
 - current IQ occupancy rate < 20% of average;
 - (AVG_IPCissue ñ IPCissue) > 0.15 (threshold increased by 0.15 for each successive reduction in number of FIFOs)

2004/4/29

COMP4211 Advance Computer Architecture

50

Specific Monitor Techniques for Scheme # 2

- Double number of FIFOs and halves size of each FIFO when either (ordered according to relative importance):
 - current IPC_{issue} drops by > 8% compared to the last cycle window
 - current IPC_{issue} drops by > 6% compared to the last cycle window in FPM
 - more than 15% of ready instructions are stalled

FIFO usage for Scheme # 2

Figure 6. FIFO usage for Scheme #2. Note we always retain the number of IQ entries to 64.

2004/4/29

Comments on FIFO usage

- For several FP benchmarks (applu, apsi, mgrid and swim), canít reduce number of FIFOs -> need more flexibility in reordering instructions
- For most Integer benchmarks → cut the FIFOs at least in half for a significant portion of the running time

COMP4211 Advance Computer Architecture

Results for Scheme # 2

Table 3. Results for Scheme #2 Benchmarks Power Saving Δ IPC Request Arbitration Total 75.9% 51.4% 38.6% compress 29.5% 59.9% 40.4% 2.4% 42.0% 30.5% 62.4% 3.5% 21.3% 46.0% 30.8% 2.2% 28.8% 60.1% 40.4% 2.6% li 27.9% 62.4% 41.6% 2.5% perl 9.7% 1.3% applu 6.0% 14.6% 5.6% 13.6% 9.0% 2.2% apsi 45.6% 73.2% 50.8% 3.0% fpppp 19.7% 29.9% 4.2% hvdro2d 44.9% 5.4% 13.1% 8.7% 1.4% mgrid 29.4% 64.0% 42.8% 4.7% su2cor swim 5.0% 12.3% 8.1% 4.0% 6.1% 14.9% 9.9% 1.9% tomeatv 8.7% 3.2% 20.1% 13.4% turb3d wave5 5.6% 13.2% 8.8% 2.9%

COMP4211 Advance Computer Architecture

40.7%

2.7%

Comments on Scheme # 2

- Easier to cut number of FIFOs for integer benchmarks -> save at least 30% of the issue queue power
- Most FP benchmarks need 64 FIFOs for a large % of running time but Scheme # 2 works reasonably well (fppp, hydro2 and su2cor)
- Average: 27.3% power saving with only 2.7% drop in performance

Outline

Introduction

average

19.6%

Focus of the paper

Overview of Approaches Taken

Related Work Done

Implementations

Experimental Results

2004/4/29

FINALLY!!!!!!!!

- Programs vary in ILP
- Dynamically reconfigure issue queue to save power
- Two approaches taken; Scheme # 2 works more efficiently
- THANK YOU & BYE-BYE !!!!!!
- Oops .. ONE LAST THINGÖ ...

2004/4/29

COMP4211 Advance Computer Architectu

57

References

- Yu Bai and R. Iris Bahar. A Dynamically Reconfigurable Mixed In-Order/Out-of-Order Issue Queue for Power-Aware Microprocessors.
- James A. Farrell and Timothy C.Fischer. Issue Logic for a 600-MHz Out-of-Order Execution Microprocessor.
- J.E. Smith. Advanced Computer Architecture 1
 ìPower Efficient Architectureî Lecture Notes.
- K. Wilcox and S. Manne. Alpha processors: A history of power issues and a look to the future.

2004/4/29

COMP4211 Advance Computer Architecture

58