q Vector Processors Part 2

Performance

I

= Vector Execution Time

= Enhancing Performance

= Compiler Vectorization

= Performance of Vector Processors
= Fallacies and Pitfalls

i Vector Execution Time

= Convoys

Set of vector instructions that coud
potentially begin execution together in
one clock period. Cannot contain
structural or data hazards. One convoy
must finish execution before another
begins (do not overlap in time).

1

s Chime

Unit of time taken to execute a convoy.
Approximate measure, ignores some
overheads like issue limitations.

m convoys of n length vectors execute in
m chimes, approximately m x n cycles.

n Startup costs
Pipeline latency

1

» Example:D=aX+Y
Unit Start-up overhead (cycles)
Load and store unit 12
Multiply 7
Add unit 6
Convoy Starting First-result Last-result

Time time time

1.LV 0 12 11+n
2.MULVSD LV |[12+n 12+n+12 23 +2n
3. ADDV.D 24 +2n 24 +2n+6 29 +3n
4.8V 30 +3n 30+3n+12 |41 +4n

I

Strip-mining loop
low =1
VL = (n mod MVL) /*find the odd-size piece */
do 1j=0,(n/MVL) /* outer loop */
do 10i = low, low + VL - 1 /* runs for length VL */
Y(i) =a * X(i) + Y(i) /* main operation */
10 continue
low = low + VL [* start of next vector */
VL = MVL /* reset the length to max */
continue

Total running time of loop
Tn = Ceil[n/MVL]X(Tloop + Tstar‘() +nXx Tchime

i Enhancing Performance

= Chaining

MULV.D V1,v2,V3
ADDV.D V4,v1,V5

Instructions must execute in 2 convoys

because of dependancies.

Chaining treats vector registers as a

collection of individual registers.
Forward individual registers.

MULV.D V1,v2,V3
ADDV.D V4,v1,V5

Unchained e} & -t S Total— 141
4
Chained i me]
Total =77
6 l 64 l

Flexible Chaining

Allows a vector instruction to chain to
any other active vector instruction

4

= Conditionally Executed Statements

do 100 i=1,64
if (A(i).ne. 0) then
A(i) = A(i) - B(i)
endif
100 continue

Cannot vectorize loop because of
conditional execution

Vector-mask control

Boolean vector of length MVL to control the
execution of a vector instruction

When a vector-mask register is enabled, any
vector instructions executed operate only on
vector elements whose corresponding entries
in the vector-mask register are 1. Entries
corresponding to a 0 in the vector-mask are
unaffacted

The previous loop can be vectorized
using a vector-mask.

LV V1,Ra ;load vector A into V1

LV V2,Rb :load vector B

L.D FO,#0 ;load FP zero into FO
SNEVS.D V1,FO ;sets VM(i) to 1 if V1(i) I= FO
SUBV.D V1,V1,Vv2 ;subtract under vector mask
CVM ;set the vector mask to all 1s

SV Ra,V1 ;store the resultin A

Vector instructions executed with
vector-masks still take execution time
for elements where the vector-mask is O

However, even with many Os in the
mask performance is often better than
scalar mode

i

= Sparse Matrices

Only non-zero elements of matrix are
stored.

— [t frle

o|l~N|o|o

w|lo|lo|o
o|lo|w|o

o|lo|o| -~

How do we access vectors in such a
structure?

Scatter-gather operations

Allow retrieval and storage of vectors from
sparse data structures

Gather operation

Takes an index vector and a base address.
Fetches vector whose elements are at
address given by adding the base address to
the offsets in the index vector

LVI Va, (Ra+Vk)

Scatter operation
Stores a vector in sparse form using an index
vector and a base address

SVI (Ra+Vk),Va

Most vector processors provide support for
computing index vectors. In VMIPS we have
an instruction CVI

SNEVS.D V1,FO
cvi V2,#8

Sparse matrices cannot be
automatically vectorized by simple
compilers. Compiler cannot tell if
elements of index vector are distinct
values and that no dependancies exist.
Requires programmer directives.

Example: Cache (1993) vs. Vector (1988)
IBM RS6000 Cray YMP
72 MHz 167 MHz
256 KB 0.25 KB

Clock
Cache

Sparse Matrix
(Cholesky Blocked)

17 MFLOPS 125 (7.3)

1

» Multiple Lanes
Single lane

Al6] BI6]

Al5] B[5]

Al4] B[4]
Al3] B[3]
A2] B[2]

Al1] B[1]

Can improve performance using
multiple lanes

Al5]

B[5]

Al6]

B[6]

All]

B[1]

A2]

B[2]

EIREIREARED

Each lane operates on its elements
independantly of the others, so no
communication between lanes needed

Adding extra lanes increases peak
performance, but does not change start-
up latency. As the number of lane
increases, start-up costs become more
significant.

1

= Pipelined Instruction Start-Up

Allows the overlapping of vector
instructions. Reduces start-up costs.

Effectiveness of Compiler

Vectorization
Benchmark name Operations executed in | Operations executed in | Speedup from hand
vector mode, compiler- | vector mode, hand- optimization
optimized optimized
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 94.5% 1.00
FLO52 91.5% 88.7% N/A
ARC3D 91.1% 92.0% 1.01
SPEC77 90.3% 90.4% 1.07
MDG 87.7% 92.4% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 91.2% 3.92
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06
QCD 4.2% 75.1% 2.15

Level of vectorization not sufficient by
itself to determine performance.
Alternate vectorization techniques can
lead to better performance. BDNA has
similar levels of vectorizations, but
hand-optimized code over 50% faster.

Performance of Vector
Processors

= R, MFLOPS rate on an infinite-length vector
= upper bound

= Real problems do not have unlimited vector lengths, and the
start-up penalties encountered in real problems will be larger

= (R, is the MFLOPS rate for a vector of length n)
= N,,,: The vector length needed to reach one-half of R,
= a good measure of the impact of start-up
= N: The vector length needed to make vector mode faster
than scalar mode

= measures both start-up and speed of scalars relative to
vectors, quality of connection of scalar unit to vector unit

s Example: R
DAXPY loop: D=aX+Y

T, = ceil[V/MVLIX(Tjoop *+ Topar) + N X T

chime

Assuming chaining, we can execute loop in 3
chimes

1. LVV1,Rx MULVS.D V2,V1,FO
2. LVV3Ry ADDV.D V4,V2,V3
3. SVRyV4

Assume MVL=64, T,,,,=15,T,~=49,T
and a 500MHz processor

3

chime™

T, = ceil[n/64]x(15 + 49) + nx 3
T,<=(n+64)+3n

=4n + 64
Ry =lim n->inf (Operations per iteration x Clock rate)
Clock cycles per iteration
= (Operations per iteration x Clock rate)
lim n->inf (Clock cycles per iteration)

lim n->inf (Clock cycles per iteration) =lim (T./n)
=lim ((4n + 64)/n)
=4

R, =2x500MHz/4 =250 MFLOPS

inf

= Example: N,
MFLOPS = FLOPS executed in N, , iterations x Clock cycles x 10*-6
Clock cycles to execute_N1 | iterations second
125 =2 x N, x 500

TN1/2

Simplifying this and then assuming N, <= 64, so that T, ._¢, = 1 X 64 +
3 xn, yields
Thesea =8 XNy
1x64 +3xN,;,=8xN,,
5xN,,=064
N, =128
Ny, =13

= Example: N,
Estimated time to do one iteration in
scalar mode is 59 clocks.

64 + 3N, = 59N,
N, = ceil[64/56]
=2

i Fallacies and Pitfalls i

= Pitfall: Concentratlng on peak performance = Where to now?
and ignoring start-up overheads. Can lead to
large N, > 100!

» Pitfall: Increasing vector performance, without
comparable increases in scalar performance
(Amdahl's Law)

» Pitfall: You can get vector performance
without providing memory bandwidth

