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Abstract

This paper examines recon�gurable pipelined datapaths (RaPiDs), a new architecture style for computation-
intensive applications that bridges the cost/performance gap between general purpose and application speci�c
architectures. RaPiDs can provide signi�cantly higher performance than general purpose processors on a wide
range of applications from the areas of video and signal processing, scienti�c computing, and communications.
Moreover, RaPiDs provide the 
exibility that doesn't come with application-speci�c architectures.

A RaPiD architecture is optimized for highly repetitive, computationally-intensive tasks. Very deep
application-speci�c computation pipelines can be con�gured in RaPiDs that deliver very high performance
for a wide range of applications. RaPiDs achieve this using a coarse-grained recon�gurable architecture that
mixes the appropriate amount of static con�guration with dynamic control.

We describe the fundamental features of a RaPiD architecture, including the linear array of functional
units, a programmable segmented bus structure, and a programmable control architecture. In addition, we
outline the 
oorplan of the architecture and provide timing data for the most critical paths. We conclude with
performance numbers for several applications on an instance of a RaPiD architecture.

1 Introduction

Many applications from a variety of �elds including signal processing, scienti�c computing, graphics, and com-
munications represent great challenges for today's compiler and architecture designers. Enormous data sets and
large computational requirements push compiler and architecture capabilities to the limit. The importance of
e�cient execution is seen in algorithms such as motion estimation for real-time video encoding and accurate
low-power �ltering for wireless communications. Such computation-intensive applications have been targeted to
a variety of di�erent architectures including general purpose processors, application speci�c integrated circuits,
and �eld-programmable compute engines. Each of these approaches makes tradeo�s between the range supported
applications and performance.

The most 
exible architectures are general purpose processors, including the large class of digital signal pro-
cessors (DSPs). To achieve performance for a wide range of applications, general purpose processors dedicate a
substantial amount of die area to data and instruction caches, a crossbar interconnect of the functional units, and
complex on-line analyses such as speculative execution and branch prediction. These complex mechanisms can
extract a moderate amount of instruction-level parallelism from ordinary programs but are not meant to extract
the large amount of �ne-grained parallelism available in many compute-intensive applications.

At the other end of the 
exibility spectrum lie application speci�c integrated circuits (ASICs) which have long
been used to achieve higher performance at a lower cost than general purpose processors. High performance can
be achieved since the architecture can be tailored for a speci�c application to extract the available �ne-grained
parallelism, while optimizing for power and/or die area. However, the drawbacks of ASICs are their lack of

exibility and their high non-recoverable engineering costs. By de�nition, an application speci�c architecture
speeds up only one application. This in
exibility combined with a high design cost make them unattractive
except for very well-de�ned and wide-spread applications. Compounding this problem is the fabrication expense
that can reach $100k, a cost that makes the use of ASICs reasonable only in high volumes.

�This work was supported in part by the DARPA under Contract DAAH04-94-G0272, and in part by Tektronix. D. Cronquist was
supported in part by a Gray fellowship. P. Franklin was supported in part by an NSF fellowship and in part by an Intel Foundation
fellowship.



Field programmable computing has attracted a lot of attention recently because of its promise to bridge
the 
exibility and performance gaps between general purpose processors and ASICs. A �eld-programmable
architecture is like an electronic lego construction set. The user puts legos (called logic blocks) together to form
a circuit that best suits his current application. At any time, the user can construct a new circuit by taking
apart the old one and building from scratch. As a result, con�gurable computing machines can deliver, in theory,
the high performance provided by application speci�c hardware along with the 
exibility of general purpose
processors. Unfortunately, this promise has yet to be realized in spite of some successful examples [1, 11]. There
are two main reasons for this.

First, con�gurable computing platforms are currently implemented using commercial �eld programmable gate
arrays (FPGAs). FPGAs are necessarily very �ne-grained (i.e. all of the logic blocks are small and regular) so
they can be used to implement arbitrary circuits, but the overhead of this generality is expensive in both area and
performance. While general purpose processors use highly optimized functional units that operate in bit-parallel
fashion on long data words, FPGAs are very ine�cient for ordinary arithmetic and only somewhat better for
logical operations. FPGA-based computing has an area/performance advantage only on complex bit-oriented
computations or complicated bit-level masking and �ltering.

Second, programming an FPGA-based con�gurable computer is akin to designing an ASIC. The programmer
either uses synthesis tools that deliver poor density and performance or designs the circuit manually, which
requires both intimate knowledge of the FPGA architecture and substantial design time. Neither alternative is
attractive, particularly for simple computations that can be described in a few lines of C code.

Our response to these problems is a new architecture style { recon�gurable pipelined datapaths (RaPiDs).
RaPiDs are coarse-grained �eld-programmable architectures for constructing deep computational pipelines. As
compared to a general purpose processor, a RaPiD can be thought of as a superscalar architecture with hundreds
of functional units but with no cache, register �le, or crossbar interconnect. Instead of a data cache, data is
streamed in directly from external memory or sensors. Instead of an instruction cache, programmed controllers
generate a small instruction stream which is decoded as it 
ows in parallel with the datapath. Instead of a
global register �le, data and intermediate results are stored locally in registers and small RAMs, close to their
destination functional units. Instead of a crossbar, a programmable interconnect is con�gured to forward data
between speci�c functional units on a per application basis.

Removing caches, crossbars, and register �les frees up a tremendous amount of area that can be dedicated to
compute resources, and reduces the communication delay by shortening wires. Unfortunately, these removals also
reduce the types of applications that can be computed on RaPiDs. Highly irregular computations, with complex
addressing patterns, little reuse of data, and an absence of �ne-grained parallelism will not map well to a RaPiD
architecture. However, regular computation-intensive tasks like those found in digital signal processing, scienti�c
computing, graphics, and communications will reap great performance gains on RaPiDs over general purpose
processors. In addition, a RaPiD provides the 
exibility that doesn't come with an ASIC.

The fundamental architectural features of RaPiDs have been developed in parallel with a programming language
and compiler since a strong synergy exists between architecture, speci�cation, and compilation. The user must
be able to easily take advantage of the full capabilities of the architecture. In addition, the architecture must
have facilities for easing the compilation of a given speci�cation. To this end, specialized hardware is added to
the architecture and special constructs are added to the language with the ultimate goal of making speci�cation
simple, compilation feasible, and hardware utilization high. Details of speci�cation and compilation can be found
in [3].

This paper describes the RaPiD architecture in detail. The block diagram in Figure 1 breaks RaPiDs down
into a datapath, a control path, an instruction generator, a stream generator, and a memory interface. This paper
discusses the fundamental features of each of these components. In particular, Section 2 introduces the datapath
architecture, including how functional units and buses are used to form an application's datapath. Section 3
presents a novel architecture for the generation of control for the datapath, including details on the programmed
controller architecture for instruction generation. Section 4 discusses how RaPiD interfaces with external memory
through the stream generator. Finally, Section 5 introduces a benchmark architecture, and Section 6 analyses
area, clock rate, and power requirements of this architecture in a speci�c technology.

2 The Datapath Architecture

A typical RaPiD datapath contains hundreds of functional units, ranging in complexity from a simple general
purpose register to a multi-output booth-encoded multiplier with a con�gurable shifter. The ability of the
architecture to forward results between these functional units determines, in part, the range of applications that
can be targeted. The interconnection method employed by many of today's superscalar processors is a crossbar {
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Figure 1: RaPiD Architecture Block Diagram. The RaPiD datapath is a linear pipeline that is con�gured from a
linear array of functional units by means of a programmable interconnect structure. The instruction generator produces
a stream which is decoded by the control path. The resulting decoded instructions provide time-varying control for the
datapath. The stream generator communicates with external memory (or memory-mapped external sensors) to stream
data in and out of the RaPiD datapath.

a completely 
exible interconnect (any functional unit can forward results to any other) which greatly simpli�es
instruction scheduling ([7]). Unfortunately, the chip area of the crossbar scales with the square of the number
of functional units. To avoid this area expense, RaPiD borrows from FPGA architectures by interconnecting its
functional units via a programmable, segmented bus structure.

Since RaPiDs consist of coarse-grained, word-based functional units, the interconnect di�ers from that of
FPGAs. The buses are word-based instead of bit based and are arranged linearly as opposed to two-dimensionally.
A linear structure is easily manageable; it simpli�es the layout and reduces the control requirements. Functional
units can be more tightly spaced, and there is no need for corner turning switches. Moreover, a wealth of research
exists showing how multidimensional algorithms can be mapped to linear arrays [6, 10, 8], especially if some
memories are embedded in the datapath since local memory can act like an extra dimension for deeply nested
speci�cations. The linear structure of the RaPiD datapath is shown in Figure 2.
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Figure 2: Overview of the RaPiD Datapath. Functional units are arranged linearly over a programmable, segmented
bus structure. A set of B � 1 tracks run the entire length of the datapath. Some tracks contain bus connectors to make
con�gurable length buses.

RaPiDs are targeted at word-based computations. The data-width, as well as the choice of �xed-point or

oating-point, are architectural design parameters. In most cases, the �xed-point data width is between 8 and
32 bits, and both signed and unsigned data are supported. Multiple �xed-point representations (within the same
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width) can be provided by con�gurable shifters in the datapath. For example, it is often necessary to have a
shifter follow a multiplier to allow the correct �xed-point representation to be chosen for the multiplier output.

Operation errors like over
ow cannot be handled as in normal processors. Instead, an extra tag bit is associated
with each data value. The functional units can be con�gured to set the tag when an over
ow occurs. The tag could
be used to represent an error state which would be propagated through all future computations. Alternatively,
the tag could indicate a saturated value, allowing for further computation.

2.1 Functional Units

Each functional unit inputs a set of words from the datapath, performs a computation based on set of control
bits, and outputs results in the form of data words and status bits. The status outputs allow for data-dependent
control to be generated. A generic functional unit is shown in Figure 3a. All functional unit outputs pass through
a Con�gDelay unit which can be con�gured as 0 to 3 register delays, as shown in Figure 3b. These optional
registers allow for the creation of very deep pipelines.
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Figure 3: A Generic Functional Unit and a Con�gurable Delay. (a) Each functional unit has inputs and outputs
for both data and control. Each output passes through a Con�gDelay unit. (b) A Con�gDelay unit's N -bit output is
equivalent to its input delayed by up to 3 registers, as determined by the two multiplexer control bits.

A variety of functional units can be included in a RaPiD architecture. General-purpose functional units like
ALUs, multipliers, shifters and memories are the most common, but for speci�c domains, a special-purpose
functional unit which performs a single function (i.e. has no control inputs) might make the most e�cient use of
silicon. An example is a Viterbi decoder for communication applications. For other domains, a highly con�gurable
functional unit might be the right choice. For example, a functional unit could be constructed of FPGA-like logic
blocks to support a range of bit manipulations like �nd �rst one, count ones, and normalize.

Memories within the datapath provide space for temporary variables, constant tables and con�gurable-length
delay lines. The size of memory is an implementation parameter. Our experience has shown that for applications
we have programmed, a local memory with 3N entries is su�cient for pipelines with N cells. Section 5 examines
several functional units that are used in the benchmark architecture.

2.2 Programmable Interconnect

The programmable interconnect consists of a set of B � 1 segmented tracks1 that run the entire length of the
datapath, as shown in Figure 2. Each track contains a set of bus segments, some of which are connected by bus
connectors. All buses have the same width, which matches the data width operated on by the functional units.
Some functional units may require or produce double-width data values, which are communicated via two buses.
These values can be treated as two independent single-width values and routed independently, for example, to
two di�erent ALUs for double-precision accumulation.

An input to a functional unit can be zero (GND) or any one of the B � 1 tracks from the interconnect. To
accomplish this, each data input is driven by a B : 1 multiplexer, whose dlgBe select lines are driven by control
signals as shown in Figure 4. The zero input can be used, for example, to clear registers.

RaPiD allows each functional unit output to drive an arbitrary number of buses via B � 1 tristate drivers
which are con�gured using B � 1 control bits. Since each tristate driver is con�gured independently, an output
can fan out to several buses or none at all if the functional unit is unused.

A RaPiD datapath is usually divided into identical units, called cells, which are replicated to form a complete
datapath. For example, the simple cell shown in Figure 5 consists of three 1-input functional units without
control (FU1s), three 2-input functional units with control (FU2s), seven tracks, and six bus connectors. The

1We used B � 1 here to be consistent with the B-input multiplexers (GND is an additional input).
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Figure 4: Interconnect Between Functional Units and Buses. (a) Each data input uses a B : 1 multiplexer to
select a bus. Each data output uses B � 1 tristate drivers to select the buses to drive. (b) This equivalent but simpli�ed
representation uses a single line to represent a multiplexer for inputs and tristate drivers for outputs.

number of replications performed to complete the datapath depends on the target technology and the application
domain's performance requirements. This division of the datapath into cells is invisible when it comes to mapping
applications.

The �rst several tracks of the interconnect have bus segments of di�ering lengths to allow for many types of
data forwarding. However, having �xed-length bus segments in all tracks is too restrictive for many situations.
For example, a pipelined bus carrying data across the entire array is very common. Moreover, the mapping
problem simpli�es when the lengths of the bus segments can be varied from application to application. To
support con�gurable length segments, several of the tracks are populated with bus connectors (Figure 5b). A
bus connector can drive left, drive right, or be disconnected. The connection is bu�ered to reduce delay in high
fanout signals and can also be con�gured to provide up to three register delays.

3 The RaPiD Control Architecture

The previous section focused on the architectural requirements for interconnecting a RaPiD's functional units. A
speci�c interconnect is determined by the many control bits found in the multiplexers, tristate drivers, Con�gDelay
units, bus connectors, and functional units. Table 1a examines the control requirements for the cell of Figure 5a.
Since there are seven tracks, each multiplexer requires three control bits, and each functional unit data output
requires seven tristate drivers. Each bus connector and every functional unit output (data and control) have a
Con�gDelay unit which requires two control bits. The total number of control bits required for this example is
117. Table 1b shows that a single RaPiD-Benchmark cell requires 393 control bits, and hence a 16-cell datapath
for would require 6288 bits.

There are several approaches for generating the control for this architecture. The most straightforward method
is to treat all control as �eld-programmable con�guration bits like in an FPGA. Unfortunately, this approach
is too in
exible and only applies to algorithms that can be mapped to a purely static data
ow network. Any
application that requires, for example, a register to be cleared, a RAM address to be incremented, or an ALU
operation to be changed on a speci�c cycle needs control that can change on each cycle. Another approach for
control generation is a programmed control architecture with a 6Kb wide instruction stream. Unfortunately,
generating such a wide instruction on every cycle would be prohibitively expensive.

Our solution is to divide the control into hard control, which is �xed for the duration of an application, and
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Figure 5: RaPiD Datapath Cell. (a) This example cell has seven tracks, six functional units, and six bus connectors.
Replicas of this cell are cascaded horizontally to form the entire datapath. (b) A bus connector can drive left, right, or
be left unconnected. It can be used to bu�er the signal between adjacent bus segments or to create up to three register
delays via the Con�gDelay unit.

Table 1: Control Requirements. (a) The example cell in Figure 5 requires 117 control bits. (b) The RaPiD-Benchmark
cell from Section 5 requires 393 control bits.

(a) (b)

Unit Bits

Unit

Units

cell

Bits

cell
Soft Hard

Multiplexer 3 9 27 27 0
Tristate Driver 1 42 42 0 42
Con�gDelay 2 15 30 0 30
Bus Connector 2 6 12 0 12
FU1 0 3 0 0 0
FU2 2 3 6 6 0
Total 117 33 84

Unit Bits

Unit

Units

cell

Bits

cell
Soft Hard

Multiplexer 4 20 80 80 0
Tristate Driver 1 196 196 0 196
Con�gDelay 2 27 54 0 54
Bus Connector 2 14 28 0 28
GP Register 0 6 0 0 0
ALU 6 3 18 18 0
RAM 3 3 9 6 3
Multiplier 8 1 8 0 8
Total 393 104 289

soft control, which can change on every cycle. A small percentage of the control bits in a RaPiD architecture
need the 
exibility of soft control. By making the multiplexer control bits soft, the tristate driver control can be
made hard. This retains the ability to perform dynamic data forwarding and avoids the extra delay introduced
by dynamically controlled tristate drivers. In addition, the Con�gDelay unit's control is hard since the amount
of pipelining in the datapath tends to be �xed over the course of an application. Functional units divide their
control between hard and soft depending on the required 
exibility. The �nal two columns of Table 1 divide the
control into soft and hard bits for both the example cell and the RaPiD-Benchmark cell.

As seen in Table 1, approximately 25% of the a RaPiD's control is soft and the remaining 75% are �eld-
programmable via SRAM bits as in an FPGA. However, only if the soft control can be generated e�ciently, in
terms of area and speed, will applications be able to reap the performance bene�ts of a RaPiD architecture.

A RaPiD's application domain consists of pipelined computations which are very repetitive. Apart from initial-
ization, �nalization, and boundary processing, algorithms spend most of their time in deeply nested computation
kernels. Such applications are naturally represented by the composition of deeply nested loops (see [3]). Soft
control is statically compiled from the nested loop speci�cation. The challenging requirements of soft control are
low instruction bandwidth and fast instruction generation.

Figure 6 examines possible control architectures. The �rst method is to convert the required soft control into
a set of state machines, which could then be mapped to an FPGA. This approach, shown in Figure 6a, can take
advantage of traditional synthesis techniques for optimizing control. However, this is a more ine�cient approach
than using dedicated counters and comparators, as found in the programmed controller approach of Figure 6b
since much of the control state comes from a nested loop speci�cation. Unfortunately, a controller with a very
long instruction is also expensive in terms of area and would most likely be the performance bottleneck due to
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Figure 6: Soft Control Implementation Options. (a) State machines are mapped to an FPGA. (b) A programmed
controller generates a VLIW. (c) A programmed controller generates a short instruction which is decoded by a con�gurable
path. (d) The controller is broken down into multiple, parallel programmed controllers which provide better support for
parallel loop speci�cations.

The length of the instruction can be greatly reduced by making two key observations. First, most of the soft
control is actually constant for a particular application. Second, because of the regularity of computations, much
of the dynamic soft control can be used to control more than one operation in more than one pipeline stage. As a
result, our approach for soft control generation is to use a smaller programmed controller with a short instruction
along with a con�gurable path containing a limited number of buses and logic gates, as shown in Figure 6c.
The controller generates instruction bits by executing code derived from the application's loop structure. The
con�gurable path uses these instruction bits, along with status bits from the functional units, to form the soft
control.

The con�gurable control path of Figure 6c looks like a scaled down version of the RaPiD datapath in Figure 2.
A set of con�gurable logic blocks are interconnected via a segmented bus structure which runs parallel to the
datapath. Each track can be driven by any bit of the instruction word. These bits then 
ow in parallel to
the datapath and potentially through logic blocks in order to produce the required soft control signals. The
complexity of the logic blocks depends on the architecture's application domain and is typically some sort of
look-up table.

In addition to logic blocks, each soft control signal can be optionally inverted. The optional inverter requires
a hard control bit to select the true or inverted signal and has optional registers on its output. If a soft control
signal is constant for the duration of an application, GND is selected as the input, and the optional inverter is
con�gured to output a 0 or 1.

As in the datapath, a set of segmented tracks run the extent of the array. The number of tracks required
in the control path varies by application but is not large because control signals tend to be reused extensively.
Interconnecting con�gurable logic blocks and optional inverters is done with multiplexers and tristate drivers, as
was shown for the datapath in Figure 4.

Figure 7 extends the example of Figure 5a for control. A cell of control is shown that generates the 33 soft
control bits. Each cell has one logic block, implemented as a 3-input look-up-table (3-LUT). A total of seven
tracks are used. The optional inverter structure is shown in Figure 7b.
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Figure 7: RaPiD Control Path Cell. (a) This example cell produces the control signals required for Figure 5. There
are seven tracks, one logic block, and six bus connectors. Replicas of this cell are cascaded horizontally to form the entire
control path. (b) An optional inverter drives each soft control signal. It takes a signal from the control path, optionally
inverts it, and registers the result. The Con�gDelay unit allows for up to 3 additional register delays.

 for i = 0 to 9

    for j = 0 to 19

        for k = 0 to 29 begin

            if (k == 0) load reg;  (instr bit #1)

            if (j <= 3) increment ram addr (instr bit #2)

            if (k > 5) x += w*y;  (instr bit #3)

            if (k == 0 && j > 3) w = 0; (instr bit #4)

        end
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k = 1 to 5
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k = 6 to 29
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j = 4 to 19


k = 0 to 0


1001


k = 1 to 5


0000


k = 6 to 29
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1 loop 10 end1
2 loop 4 end2
3 inst 1 1100
4 inst 5 0100
5 end2: inst 24 0110
6 loop 16 end1
7 inst 1 1001
8 inst 5 0000
9 end1: inst 24 0010
10 halt

(b) (c)

Figure 8: Programming a Controller. (a) Each line in the code corresponds to an instruction bit. (b) The loop nest
is statically compiled producing a loop nest with instruction words. (c) The loop nest is converted to C-instructions. (d)
This programmed controller is optimized for the execution of nested loops.
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3.1 Instruction Generator

The instruction word of Figure 6c consists of bits derived from the application's nested loop speci�cation. These
instruction bits are generated by a programmed controller which is optimized to execute nested loop structures.
The algorithm is �rst statically compiled to yield a program for this controller. For example, consider the nested
loop code of Figure 8a. Each of the four conditional statements generates one bit of the instruction. Static
compilation removes the conditionals on the loop variables, expanding this loop to generate static instructions as
shown in Figure 8b.

The programmed controller in Figure 6c must be able to execute loop structures like the one in Figure 8b and
produce, on average, at least one instruction per cycle. To avoid the complexity of avoiding stall cycles when
dealing with the boundary cases of loop nests, the controller packs innermost loops into a single instruction with
a count and provides a repeater to issue instructions the appropriate number of times.

Instructions executed by the programmed controller are called C-instructions. The C-instruction \inst CNT I"
is used to output the instruction word \I" to the control path \CNT" consecutive times. The C-instruction
\loop CNT LAST" executes a loop \CNT" times, starting at the next program counter and ending at \LAST". For
example, Figure 8c shows a set of C-instructions equivalent to the code in Figure 8b.

The programmed controller design is shown in Figure 8d. A loop stack is used to optimize handling of nested
loops. Each time the controller encounters a \loop" C-instruction, it �lls the LoopCount, BeginPC, and EndPC

registers and pushes any prior loop data onto the loop stack. The controller then executes the loop body until
EndPC==PC. Then, PC is replaced with BeginPC and LoopCount is decremented. When LoopCount equals one,
the loop stack is popped, forcing the controller to fall through after the last iteration of the loop body. This
specialized implementation requires only one cycle for loop initialization; the remainder of the loop processing is
isolated in the loop stack and program counter and is overlapped with executing the loop body. This compares
favorably to more typical loop approaches where looping instructions appear in the loop body itself.

Even though a single programmed controller is su�cient, it is not the best match for a speci�cation consisting
of parallel loop nests. For example, to implement the loop nest of Figure 8a running in parallel with another loop
nest, a single controller would have to take, in the worst case, the cross-product of the two loops nests to generate
all instructions words. A more e�cient approach is to have multiple controllers running in parallel, one per parallel
loop nest, as shown in Figure 6d. Synchronization between parallel loops is done via signal/wait synchronization
primitives. A synchronization unit watches the 
ow of C-instructions from all controllers and aligns the streams
according to the signal/wait pairs. The C-instruction \signal NUM" is a non-blocking operation tells controller
number \NUM" to stop waiting or to skip its next wait if not currently waiting. The C-instruction \wait I" simply
repeats instruction word \I" until a signal arrives.

Unfortunately, instruction bits that depend on variables across controllers may require the use of additional
logic gates in the con�gurable path. To reduce this gate requirement, the outputs of all controllers are merged
to form a single instruction stream, as shown in Figure 6d. The merge unit could be a con�gurable PLA-type
structure or a simple bitwise-OR if less complexity is needed.

4 RaPiD Memory Architecture

Within a RaPiD architecture, memory accesses are decoupled from the instruction stream. The sequences of
memory references from the nested loop speci�cation are mapped to address generators, as shown in Figure 9.
Each address generator is associated with a FIFO, forming an input or an output stream. Using the addresses
from the address generators, input stream FIFOs are �lled from memory and output stream FIFOs are emptied
to memory. These reads and writes are handled by a memory interface which routes addresses and data between
the streams and external memory modules. The memory must provide high bandwidth either through fast SRAM
memory technology, aggressive interleaving, and/or batching and out-of-order handling of addresses. Applications
typically execute between 1 and 3 operations per cycle so that the memory must sustain a data transfer of up
3 words/cycle. The memory interface also provides a memory-mapped mechanism to stream data from external
sensors instead of external memory.

The address generators closely resemble the programmed controller in Figure 8d but produce addresses instead
of instructions. In order to output more than one address per cycle on average, addresses are packaged with a
count and a stride. The repeater in Figure 9 di�ers from the repeater in Figure 6d since it must increment the
address by the stride on each repeat.

The addressing pattern for each stream is statically determined at compile time. Reads and writes to the
stream FIFOs are controlled from instruction bits in the control path, as illustrated in Figure 9. Synchronization
between the data and instruction streams is achieved by halting the RaPiD array when a data FIFO is empty on
a read or full on a write.
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Figure 9: A RaPiD Stream Generator. Each stream FIFO is associated with an address generator. The address
generator produces a stream of addresses which are serviced by the memory interface. The corresponding data is then put
into or taken from the appropriate FIFO.

5 A Benchmark Architecture

The previous sections discussed architectural features that apply to all RaPiDs. This section develops a speci�c
RaPiD architecture, called RaPiD-Benchmark, as an illustrative example. We will present cost, performance and
power results using this benchmark architecture.

RaPiD-Benchmark's application domain consists primarily of signal processing applications. Such a domain
often requires very high precision multiply-accumulates operations, and hence RaPiD-Benchmark has a 16-bit
�xed-point datapath with multipliers and ALUs. In addition, the datapath provides general purpose registers
and RAMs. A RaPiD-Benchmark cell comprises three ALUs, three 64-word RAMs, six general purpose registers,
and one multiplier. There are 14 data tracks and 32 control tracks. This cell is replicated 16 times to form the
complete RaPiD-Benchmark datapath. This mix of functional units and pipeline depth was chosen based on the
requirements of a range of signal processing applications.

RaPiDs contain an abundance of registers, most of which are used to pipeline the computation. Often a more

exible register is required to store constants and/or temporary values and to forward values from a bus segment
in one track to a segment in another track. A functional unit consisting solely of a con�gurable delay provides
this 
exibility. We call such a functional unit a general purpose register (GP register).

The most commonly used functional unit is the general-purpose arithmetic logic unit (ALU). Multiple ALUs
can be combined in a pipelined way to compute a multiple-width operation, most typically as a 32-bit add for
multiply-accumulate computations. The output register of the ALU can also be used as the accumulator for
multiply-accumulate operations.

RaPiD-Benchmark includes three local memories per cell. The RAM address is supplied either by the datapath
or by a local address generator that supports simple sequential memory access. If values are read and written
sequentially, as is the most common case, then no datapath resources need to be used for address generation.
Some applications use the RAMs as a con�gurable-length shift register that delays the values by a �xed number
of clock cycles. This is implemented by allowing a read followed by a write to the same address in one clock cycle.

The multiplier unit is a two stage booth encoded multiplier which takes two 16-bit inputs and produces a 32-
bit result. The result can be shifted by a statically programmed amount to maintain the appropriate �xed-point
representation. Both halves of the result are available as output via separate sets of bus drivers.

The instruction generator is comprised of four programmed controllers, a synchronizer, and a simple OR merge
unit. There are three input and three output streams, each containing an address generator.

Con�guration memory is implemented as a static RAM organized into words of 16 bits each. Words in this
RAM can be written in any order so that recon�guration can be streamlined. To avoid driving buses with
two di�erent bus drivers during recon�guration, each bus has an associated daisy-chained priority signal that
ensures at most one driver is enabled at any time. This low-overhead mechanism simpli�es and speeds up the
recon�guration process.
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6 Performance

This section analyzes the performance, area cost and power consumption of the RaPiD-Benchmark architecture
presented in the previous section. This analysis is based on the layout of the components of the RaPiD-Benchmark
cell. This layout uses a vintage-1995 3.3v 0:5� CMOS process using MOSIS scalable submicron design rules.
These components were fabricated through MOSIS using two test chips. Tests of those chips substantiated the
performance results presented here.

We �rst present the delays for the components of the RaPiD-Benchmark cell and show that a 100 MHz clock is
feasible for a scalable pipeline in this technology. The performance results we present later for various applications
are based on this 100 MHz clock. We next present the area of these components and the entire RaPiD-Benchmark
cell to show the relative sizes of the computing structures and the con�guration hardware. Finally, we present
estimates of the power consumption of the RaPiD-Benchmark cell.

6.1 RaPiD Performance

In order to achieve a 100 MHz clock rate, the longest combinational delay in the datapath must not exceed 10ns,
including the register setup time. The delay of various components is given in Table 2a as measured by HSpice on
the layout. (Multiply1 and Multiply2 refer to the �rst and second pipeline stages of the multiplier.) The In!Clk

Table 2: Timing Data. (a) Component Delays (ns). (b) Critical Path Delays (ns).

(a) (b)

Pipelined Comb.
Unit In!Clk Clk!Out Bypass
Multiply1 6.3 1.2 -
Multiply2 5.3 1.6 6.9
ALU 4.3 1.6 5.9
Ram 2.0 3.4 -
Bus Connector 0.5 1.2 1.6
Data Register 1.1 1.6 2.1
Optional Inv. 1.6 1.2 -
3-LUT 2.0 1.2 2.2

Path Delay
Register!four busses!Register 7.5
Register!bus!Multiply1 7.9
Multiply1!Multiply2 6.5
Register!two busses!ALU 7.5
Ram!one bus!ALU 7.7
Multiply2!two busses!Ram 6.8
Control Register!one bus!

3LUT!two busses!Optional Inv. 6.6

delay is the combinational delay of the component from the input bus segment to the register, including the input
multiplexer and the setup time of the register. The Clk!Out delay is the combinational delay of the component
from the register to the output bus segment, including the register propagation delay and delay driving the bus.
The combinational bypass column gives the delay from the input bus segment to the output bus segment when
no register is used.

Table 2b gives a number of register-to-register paths whose delays are less than 8ns. This shows that the RaPiD-
Benchmark architecture will run at 100MHz, with a timing margin of 25%, as long as applications can be pipelined,
placed, and routed within this path delay constraint. Because of the generous number of con�gurable delay
elements in the datapath, it is straightforward to pipeline the computation to meet this path delay constraint. The
multiplier is generally on the critical path, but the delay is well-balanced with that needed by other communication
paths. In cases where feedback loops are present, the circuit will necessarily be C-slowed[9], that is, run at the
100 MHz clock rate, but with su�cient additional registers so that results are produced every N cycles, where
N>1.

6.2 Layout Area

Table 3 presents the area of each the RaPiD-Benchmark components and the percentage of the cell area devoted
to each part of the datapath. This area is given in units of mega-�2. The cell area of 56.35M�2 converts to 5.07
mm2 for � = :3� (0.5� process) and 2.25 mm2 for � = :2� (0.35� process),assuming the same design rules.

The area �gures are divided into three categories: computational units, con�gurable interconnect and control.
Approximately one third of the area is allocated to each. Figure 10 shows the 
oorplan of a RaPiD-Benchmark
cell. The top part of the array is devoted to multipliers and data memories, the middle part is the segmented
interconnection structure overlaid on ALUs, registers and bus connectors. The bottom part is the control path
and also contains the static con�guration cells.

The straightforward interpretation of the results in Table 3 is that the con�guration overhead approximately
triples the area of the layout. But this analysis ignores many factors. On one hand, a hardwired circuit needs
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Table 3: Area of a RaPiD-Benchmark cell.

Component Area (M�2) Number Total Area (M�2) % of cell Area
data memories 2.81 3 8.43 15.0%
multipliers 5.16 1 5.16 9.2%
ALUs 0.92 3 2.76 4.9%
general registers 0.39 6 2.32 4.1%
Functional Unit Subtotal 18.67 33.1%

Multiplier/RAM I/O routing 2.87 5.1%
Input multiplexers 0.22 20 4.44 7.9%
Output drivers 0.22 14 3.10 5.5%
Bus connectors 0.39 15 5.90 10.5%
Con�gurable delays 0.39 5 1.94 3.4%
Con�gurable Interconnect Subtotal 14.87 32.4%

Soft control bits 0.07 104 6.89 12.2%
Programmable logic blocks 0.35 3 1.05 1.9%
Bus connectors 0.01 104 1.44 2.6%
SRAM con�guration cells 0.002 312 0.79 1.4%
Con�guration memory overhead 2.72 4.8%
Control Subtotal 12.89 22.9%

Unused space 6.54 11.6%
Total cell area 56.35 100%
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Figure 10: Floorplan of a RaPiD-Benchmark cell.
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both interconnect and some form of control, typically provided by FSMs, both of which are called overhead here.
On the other hand, a hardwired circuit would typically not use all the functional units or the full data width.
Even more perplexing is how to evaluate the ability of a con�gurable datapath to execute a variety of di�erent
computation while a �xed circuit executes only one. The approximately 67% overhead for RaPiD datapaths
compares with the approximately 95-98% overhead for FPGAs.

Table 4 estimates the area of the components needed outside the datapath itself. This area represents about
15% of the total area of a 16-cell array.

Table 4: Area of RaPiD Controller and Data Streams.

Component Area (M�2) Number Total Area
Instruction generator 30 1 30
Address generators 6 6 36
16 entry data FIFOs 1.5 6 9
Inter-row bus connectors 15 4 60
Total auxiliary area 135

6.3 Power Consumption

The RaPiD architecture has features that makes it attractive for low power applications. Communication in the
linear array is done using relatively short buses and only units that are used by an application consume power.
This is done by turning o� the clock to registers that are con�gured out of the computation and tying inputs of
unused functional units and buses to ground. Thus power is used only to drive the clock backbone and to clock
the units actually performing computation and data communication.

Table 5a gives an estimate of the power consumption for various components in the datapath. These �gures
were derived using HSpice and PowerMill to analyze the layout. Each entry gives the average operating current
used by the RaPiD component. Bus transfer refers to driving a value from the output of one functional unit, or
bus connector, to the input of another via a long bus. (These �gures do not give a true indication of possible
low-power performance since our layout of the RaPiD components optimized for performance rather than power.)

Table 5: Power Consumption. (a) Average operating current of RaPiD components. (b) Application performance.

(a) (b)

Component Power
Multiplier 23ma
ALU 2ma
Memory read/write 13ma
Register 0.5ma
Bus transfer 0.7ma

Application Computational Memory Power
bandwidth accesses/cycle

16 tap FIR �lter 100M samples/sec 2 1.9W
1024 tap FIR �lter 1.56M samples/sec 0.03 3.4W
2D convolution, 4x4 kernel 100M pixels/sec 3 1.9W
Matrix multiply 763 128x128 matrices/sec 1.5 4.1W
8x8 DCT/IDCT 1.56M blocks/sec 2 4.0W
Full motion estimation

8x8 blocks, 24x24 window 865K blocks/sec <0.1 2.2W
Peak power 6.1W

Table 5b shows the power consumed by the RaPiD datapath for a set of applications. If all components and
buses were clocked, peak power would be 6.1W. These power �gures illustrate the improvement that can be
obtained by using con�guration information to reduce power consumption. We emphasize that these numbers
are only estimates.

6.4 Application Performance Results

This section presents the overall performance results for several applications that have been mapped to the
RaPiD-Benchmark architecture. References [5] and [3] contain the details on how these applications are mapped
to a RaPiD pipeline.

Matrix multiply can be performed on arbitrarily sized matrices. Once the pipeline is full (and assuming no
memory stalls) RaPiD performs at a sustained rate of approximately 1:6 billion MACs (multiply-accumulates)
per second. The precise performance depends on memory stalls, frequency of recon�guration, matrix dimensions
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and tiling granularity. An average of 1.5 memory accesses (reads and writes) are performed per cycle. A relatively
pedestrian memory system can keep up the pace for the mostly linear addressing performed by matrix multiply.

A 16-cell RaPiD array can e�ciently compute an 8 � 8 2D-DCT by performing two matrix multiplies in the
datapath, passing the transposed output of the �rst multiply to the input of the second. For images larger than
256x256 pixels, RaPiD achieves a sustained rate of almost 1:6 billion MACs, including recon�guration overhead
between images, with an average of 2 memory accesses per cycle.

Motion estimation is a very compute-intensive application that is performed in conjunction with data com-
pression of moving images. As with matrix multiply and DCT, RaPiD performs at a sustained rate of 1:6 billion
di�erence/absolute value/accumulate operations per second but with an average of 0.1 memory accesses per cycle.
This performance is achievable even for relatively small images.

Motion picture compression requires both motion estimation and DCT to be performed on each frame. Given
a recon�guration time of 2000 cycles (20 �sec.), little performance is lost to recon�guration and pipeline �lling for
this application. For a standard 720� 576 frame, the RaPiD-Benchmark architecture achieves about 12 frames
per second when executing both full motion estimation and DCT (including 4000 recon�guration cycles per frame
and pipeline �lling).

The performance and power results are summarized in Table 5b for these and other applications.

6.5 Comparison to Other Architectures

RaPiD is most similar to systolic array architectures, which have been used for the past 20 years to solve computa-
tionally intensive problems. Most systolic arrays appear as ASICs, although some programmable systolic arrays
have been de�ned, notably the Intel iWarp. Programmable systolic arrays use a very di�erent control model
based on the standard microprogrammed control of a general datapath. iWarp in particular closely resembled a
microprocessor with hardware support for systolic communication. In contrast, RaPiD is much more �ne-grained
with small memories, con�gurable interconnect and a very e�cient con�gurable control mechanism. RaPiD is
clearly able to execute linear systolic algorithms, and in fact most RaPiD algorithms are systolic. But RaPiD
can also be con�gured to implement algorithms that are not systolic, for example a Viterbi decoder and a spline
generator pipeline.

RaPiD is somewhat similar to SIMD and vector architectures, which also use very short instructions relative to
the number of operations being performed. RaPiD is similar to SIMD in that a single instruction is used to control
all stages of the pipeline. But RaPiD is not restricted in the same way because of its con�gurable control path.
For example, the RaPiD pipeline can be con�gured to perform two di�erent computations in two di�erent parts
of the pipeline. RaPiD is also similar is some ways to vector architectures, where the data memories are viewed
as distributed vector registers. However, these RaPiD memories do not have the high bandwidth to memory that
vector registers do, and vector architectures do not take advantage of the local reuse of data and the �ne-grained
chaining inherent in systolic algorithms.

Quantitative comparisons to other architectures are di�cult because of di�erences in technology, application de-
tails, data format, and memory systems. For comparison, we cite here performance results for a high-performance
digital signal processor and one of the highest performance FPGA-based recon�gurable computing machines.

De Greef et al. derive a motion estimation algorithm highly optimized for DSP-style architectures [4]. In a case
study of the 50MHz Texas Instruments TMS320C80 digital signal processor (containing four 32-bit DSPs and
one 64-bit RISC processor), they show that 23 TMS320C80 chips can implement motion estimation of 720� 576
pixel frames at 25 frames/second. (A 60MHz version would reduce this requirement to 12 chips).

The PAM P1 is an FPGA-based recon�gurable computing machine consisting of 23 Xilinx XC3090 FPGAs,
a 4MB local RAM, and a 100MB/s host bus. The PAM project has reported some of the best performance for
con�gurable machines. A single PAM P1 board can perform 2D-DCT at a rate of 1.4 GOPS (an OP is a multiply,
add, subtract or shift)[2]. This section showed that RaPiD achieves 1.6 GOPS.

7 Conclusion

RaPiD represents an e�cient con�gurable computing solution for regular computationally-intensive applications.
By combining the appropriate amount of static and dynamic control, it achieves substantially reduced control
overhead relative to FPGA-based and general-purpose processor architectures. Processors must devote resources
to be able to perform irregular and unpredictable computations, while FPGAs must devote resources to construct
unpredictable circuit structures. RaPiD is optimized for highly predictable and regular computations which
reduces the control overhead. The assumption is that RaPiD datapaths will be integrated closely with a RISC
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engine on the same chip. The RISC would control the overall computational 
ow, performing the unstructured
computations which it does best, while farming out the heavy-duty, brute-force computation to RaPiD.

One open question then is how to best incorporate RaPiD into a larger system comprising a general-purpose
processor and a more general memory system. One approach is to treat it as a co-processor. We believe that
RaPiD should be bound much more closely to a general-purpose processor. In this model, it would be viewed as
a special functional unit of the processor with its own special path to memory that could include the processor
cache where appropriate. In such a model, the granularity of the computation passed to RaPiD could be relatively
small, and the con�guration information could be contained in the instruction stream and decoded to con�gure the
RaPiD datapath. Such a tight interaction would greatly increase the application domain of RaPiD. Processors
incorporating a RaPiD array could be used for both general-purpose computing as well as compute-intensive
applications like digital signal processing.
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