COMP4161 Advanced Topics in Software Verification

INV & Exam Prep

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

COMP4161 Advanced Topics in Software Verification

INV

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Recall:

- \rightarrow invariants are needed to automate the application of hoare rules
- \rightarrow they are used by the weakest precondition calculus to deal with loops

Recall:

- \rightarrow invariants are needed to automate the application of hoare rules
- \rightarrow they are used by the weakest precondition calculus to deal with loops

Recall:

- \rightarrow an invariant needs to be "enough" (to prove the postcondition)
- \rightarrow an invariant needs to be an invariant

Recall:

- \rightarrow invariants are needed to automate the application of hoare rules
- \rightarrow they are used by the weakest precondition calculus to deal with loops

Recall:

- \rightarrow an invariant needs to be "enough" (to prove the postcondition)
- \rightarrow an invariant needs to be an invariant
	- \rightarrow "true before the loop"
	- → "if true at the start of an iteration, still true after one iteration"


```
{ P } i0; i1; i2; { Q }
```


```
(P \implies pre (i_0; i_1; i_2;) Q) \implies \{ P \} i_0; i_1; i_2; \{ Q \}
```


$$
(P \Longrightarrow pre (i_0; i_1; i_2;) Q) \Longrightarrow \{ P \} \quad i_0; i_1; i_2; \{ Q \}
$$
\n
$$
\{ P \}
$$
\n
$$
i_0;
$$
\n
$$
i_1;
$$
\n
$$
pre i_2 Q
$$
\n
$$
i_2;
$$
\n
$$
\{ Q \}
$$


```
(P \implies pre (i_0; i_1; i_2;) Q) \implies \{ P \} i_0; i_1; i_2; \{ Q \}{ P }
                 i<sub>0</sub>;
                                  pre i<sub>1</sub> (pre i<sub>2</sub> Q)
                 i1;
                                  pre i2 Q
                 i2;
                  { Q }
```


```
(P \implies pre(i_0; i_1; i_2;) Q) \implies \{P\} i<sub>0</sub>; i<sub>1</sub>; i<sub>2</sub>; \{Q\}{ P }
                                  pre i_0 (pre i_1 (pre i_2 Q)) = pre i_1; i_2; i_3; Q
                 i_{0};
                                  pre i<sub>1</sub> (pre i<sub>2</sub> Q)
                 i1;
                                  pre i2 Q
                 i_2;
                   { Q }
```


{ *P* } *WHILE b DO c OD* { *Q* }

{ *P* } ?? *pre* (*WHILE b INV I DO c OD*) = *I WHILE b INV I DO c OD* { *Q* }

{ *P* } $P \implies I$ ("true before the loop") ?? *pre* (*WHILE b INV I DO c OD*) = *I WHILE b INV* $I \wedge b \implies$ *pre c l* ("if true at the start of an iteration,") *DO* ("still true after one iteration") *c OD* { *Q* }

{ *P* } $P \implies I$ ("true before the loop") ?? *pre* (*WHILE b INV I DO c OD*) = *I WHILE b INV* $I \wedge b \implies$ *pre c l* ("if true at the start of an iteration,") *DO* ("still true after one iteration") *c OD I* ∧ \neg *b* \implies *Q* ("enough") { *Q* }


```
{ a ≥ 0 ∧ b ≥ 0 }
A := 0;
B := 0;WHILE A \neq aDO
  B := B + b;A := A + 1OD
```


```
{ a ≥ 0 ∧ b ≥ 0 }
A := 0; A = 0 1 2 3 4 ...B = 0; B = 0 b b+b b+b+b b+b+b+b ...
WHILE A \neq aDO
 B := B + b;
 A := A + 1OD
```


```
{ a ≥ 0 ∧ b ≥ 0 }
A := 0; A = 0 1 2 3 4 ...B := 0; B = 0 b b+b b+b+b b+b+b+b ...
WHILE A \neq aDO
 B := B + b;
 A := A + 1OD
{B = b * a}
```


 $\overline{\text{TS}}$

```
{ a ≥ 0 ∧ b ≥ 0 }
A := 0; A = 0 1 2 3 4 ...B := 0; B = 0 b b+b b+b+b b+b+b+b ...
INV {B = b * A}WHILE A \neq aDO
  B := B + b;
 A := A + 1OD
{ B = b ∗ a }
```


 $\overline{\text{ms}}$

```
{ a ≥ 0 ∧ b ≥ 0 }
A := 0;B := 0;INV {B = b * A}WHILE A \neq aDO
  B := B + b;
  A := A + 1OD
{ B = b ∗ a }
```


```
{ a ≥ 0 ∧ b ≥ 0 }
A := 0;
B := 0; 0 = b * 0 \checkmarkINV {B = b * A}WHILE A \neq aDO
  B := B + b;
  A := A + 1OD
{ B = b ∗ a }
```


$$
{a \geq 0 \land b \geq 0 }
$$

\n
$$
A := 0;
$$

\n
$$
B := 0;
$$

\n
$$
1 \text{N} \setminus \{B = b * A\}
$$

\n
$$
\text{WHILE } A \neq a
$$

\n
$$
B = b * A \land A \neq a \implies B + b = b * (A + 1)
$$

\n
$$
B := B + b;
$$

\n
$$
A := A + 1
$$

\n
$$
B = b * A \land A \neq a \implies B + b = b * (A + 1)
$$

\n
$$
B = b * A \land A \neq a \implies B + b = b * (A + 1)
$$

$$
{a \geq 0 \land b \geq 0 }
$$

\n
$$
A := 0;
$$

\n
$$
B := 0;
$$

\n
$$
1 \text{N} \setminus \{B = b * A\}
$$

\n
$$
2 \text{WHILE } A \neq a
$$

\n
$$
B = b * A \land A \neq a \implies B + b = b * (A + 1)
$$

\n
$$
B := B + b;
$$

\n
$$
A := A + 1
$$

\n
$$
3 \text{N} \setminus A \neq a \implies B + b = b * (A + 1)
$$

\n
$$
= b * A + b
$$

\n
$$
= B + b \quad \checkmark
$$

\n
$$
A := A + 1
$$

\n
$$
B = b * a
$$

$$
{a \geq 0 \land b \geq 0 }
$$

\n
$$
A := 0;
$$

\n
$$
B := 0;
$$

\n
$$
0 = b * 0 \quad \checkmark
$$

\n
$$
NVI|LE A \neq a
$$

\n
$$
B = b * A \land A \neq a \quad \Rightarrow B + b = b * (A + 1)
$$

\n
$$
DO
$$

\n
$$
B := B + b;
$$

\n
$$
A := A + 1
$$

\n
$$
B = b * A \land A = a \quad \Rightarrow B = b * a
$$

\n
$$
{B = b * A \land A = a \quad \Rightarrow B = b * a \quad \checkmark}
$$

$$
\{ a \ge 0 \land b \ge 0 \}
$$

\n $A := 0;$
\n $B := 0;$
\n $WHILE A < a$
\nDO
\n $B := B + b;$
\n $A := A + 1$
\nOD

$$
\{ a \ge 0 \land b \ge 0 \}
$$

\n $A := 0;$
\n $B := 0;$
\n $WHILE A < a$
\nDO
\n $B := B + b;$
\n $A := A + 1$
\nOD
\n $\{ B = b * a \}$


```
{ a ≥ 0 ∧ b ≥ 0 }
A := 0;
B := 0;
INV {B = b * A}WHILE A < aDO
  B := B + b;
  A := A + 1OD
{B = b * a}
```


$$
{a \geq 0 \land b \geq 0}
$$
\n
$$
A := 0;
$$
\n
$$
B := 0;
$$
\n
$$
D = b * 0 \quad \checkmark
$$
\n
$$
D = b * 0
$$
\n
$$
B = b * A \land A < a \implies B + b = b * (A + 1)
$$
\n
$$
B = b * A \land A \geq a \implies B = b * a \quad ? ? ?
$$
\n
$$
B = b * A \land A \geq a \implies B = b * a \quad ? ? ?
$$

$$
\{ a \ge 0 \land b \ge 0 \}
$$

\n
$$
A := 0;
$$

\n
$$
B := 0;
$$

\n
$$
0 = b * 0
$$

\n
$$
N = b * A \land A \le a
$$

\n
$$
B = b * A \land A < a \implies B + b = b * (A + 1)
$$

\n
$$
B := B + b;
$$

\n
$$
A := A + 1
$$

\n
$$
B = b * A \land A \ge a \implies B = b * a
$$

\n
$$
\{ B = b * a \}
$$

$$
\{ a \ge 0 \land b \ge 0 \}
$$

\n
$$
A := 0;
$$

\n
$$
B := 0;
$$

\n
$$
0 = b * 0 \land 0 \le a
$$

\n
$$
N N \{ B = b * A \land A \le a \}
$$

\n
$$
B = b * A \land A < a \longrightarrow B + b = b * (A + 1)
$$

\n
$$
B := B + b;
$$

\n
$$
A := A + 1
$$

\n
$$
B = b * A \land A \ge a \longrightarrow B = b * a
$$

\n
$$
B = b * A \land A \ge a \longrightarrow B = b * a
$$

\n
$$
A \le a \qquad \land A \le a
$$


```
{ a ≥ 0 ∧ b ≥ 0 }
A := 0:
B := 0; 0 = b ∗ 0 ∧ 0 < a √
INV { B = b * A \wedge A \le a}
WHILE A < a B = b * A \wedge A < a \longrightarrow B + b = b * (A + 1)DO ∧ A ≤ a ∧ A + 1 ≤ a ✓
  B := B + b;
  A := A + 1OD B = b * A \wedge A > a \longrightarrow B = b * a{ B = b ∗ a } ∧ A ≤ a ✓
```


```
{ a \geq 0 \land b > 0 }A := a;
B := 1;
WHILE A \neq 0DO
   B := B * b;
   A := A - 1OD
```


$$
\{ a \ge 0 \land b > 0 \}
$$

\n $A := a;$
\n $B := 1;$
\n $A = a;$
\n $A = b;$
\n b^*b
\n b^*b^*b ...

WHILE
$$
A \neq 0
$$

\nDO

\n $B := B * b$

\n $A := A - 1$

\nOD

$$
\{ a \ge 0 \land b > 0 \}
$$

\n $A := a;$
\n $B := 1;$
\n $A = a$
\n $B = a$
\n

WHILE
$$
A \neq 0
$$

\nDO

\n $B := B * b$

\n $A := A - 1$

\nOD

\n $\{B = b^a\}$

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

$$
{\begin{array}{ccc}\n\{ a \geq 0 \land b > 0 \} \\
A := a; \\
B := 1; \\
B := b^3 = b^{a-A}\n\end{array}}
$$

WHILE
$$
A \neq 0
$$

\nDO

\n $B := B * b$

\n $A := A - 1$

\nOD

\n $\{B = b^a\}$

$$
\{ a \ge 0 \land b > 0 \}
$$

\n
$$
A := a; \qquad A = a \qquad a \cdot 1 \qquad a \cdot 2 \qquad a \cdot 3 \qquad ...
$$

\n
$$
B := 1; \qquad B = a \qquad 1 \qquad b \qquad b^*b \qquad b^*b^*b \qquad ...
$$

\n
$$
= b^3 = b^{a-A}
$$

INV { *B* = *b*^{*a*−*A*}} WHILE $A \neq 0$ DO $B := B * b$; $A := A - 1$ OD ${B = b^a}$

 ${ a \geq 0 \land b > 0 }$ $A := a;$ $A = a + a - 3$ $A = a - 1$ $B = 1$; $B = 1$ b b*b b*b*b ... $= b^3 = b^{a-A}$ $1 = b^{a-a}$ INV { *B* = *b*^{*a*−*A*}} $\textsf{WHILE}\ \pmb{A} \neq \textsf{0} \qquad \qquad B=b^{a-A} \land A \neq \textsf{0} \longrightarrow \ B \ast \ b=b^{a-(A-1)}$ DO $B := B * b$; $A := A - 1$ OD $B = b^{a-A} \wedge A = 0 \longrightarrow B = b^a$ ${B = b^a}$

 ${ a \geq 0 \land b > 0 }$ $A := a;$ $A = a + a - 3$ $A = a - 1$ $B = 1$; $B = 1$ b b*b b*b*b ... $= b^3 = b^{a-A}$ $1 = b^{a-a}$ INV { $B = b^{a-A}$ ∧ A≤ a} $\textsf{WHILE}\ \pmb{A} \neq \textsf{0} \qquad \qquad B=b^{a-A} \land A \neq \textsf{0} \longrightarrow \ B \ast \ b=b^{a-(A-1)}$ DO $B := B * b$; $A := A - 1$ OD $B = b^{a-A} \wedge A = 0 \longrightarrow B = b^a$ ${B = b^a}$

$$
\begin{cases}\n\text{True }\\ \nX := x; \\
Y := [];\n\end{cases}
$$

WHILE $X \neq \lbrack \rbrack$

DO *Y* := (*hd X* $#$ *Y*); $X := \mathcal{U} X$ OD

{ *True* } $X = X;$ $X = [x_0; x_1; x_2...] [x_1; x_2...] [x_2...]$... $Y := []$; $Y = []$ $x_0 \# []$ $x_1 \# x_0 \# []$...

WHILE $X \neq \lbrack \rbrack$

DO *Y* := (*hd X* $#$ *Y*); $X := H X$ OD

$\{$ *True* $\}$
 $X = x$; $X = X;$ $X = [x_0; x_1; x_2...] [x_1; x_2...] [x_2...]$... $Y := []$; $Y = []$ $x_0 \# []$ $x_1 \# x_0 \# []$...

WHILE $X \neq \lbrack \rbrack$

DO *Y* := (*hd X* $#$ *Y*); $X := H X$ OD $\{ Y = rev X \}$

$\{$ *True* $\}$
 $X = x$; $X = X;$ $X = [x_0; x_1; x_2...] [x_1; x_2...] [x_2...]$... $Y := []$; $Y = []$ $x_0 \# []$ $x_1 \# x_0 \# []$...

$$
INV { (rev X)@Y = rev X} WHILE X \neq []
$$

$$
PO
$$

\n
$$
Y := (hd X \# Y);
$$

\n
$$
X := t! X
$$

\n
$$
\{ Y = rev X \}
$$

$$
\{ \begin{array}{lll}\n\{ \text{True } \} & X := x; & X = & [x_0; x_1; x_2...] & [x_1; x_2...] & [x_2...] & \dots \\
Y := []; & Y = [] & x_0 \#[] & x_1 \# x_0 \#[] & \dots \\
 & \text{INV } \{ \text{ (rev X)} @Y = rev x \} \\
 & \text{WHILE } X \neq [] & \text{ (rev X)} @Y = rev x \land X \neq [] \rightarrow \\
 & \text{ (rev (t / X))} @((hd X) \# Y) = rev x \\
 & \text{DO} & Y := (hd X \# Y); & \quad X := t / X \\
 & \text{OD} & \text{ (rev X)} @Y = rev x \land X = [] \rightarrow Y = rev x \\
 & \{ Y = rev x \} & \end{array}
$$

{
$$
True
$$
}
\n $X := x;$
\n $Y := [];$
\n $Y = []$
\n $[rev x)@[] = rev x$
\n $[rev x]@[] = rev$
\n $[rev x]@[] = rev$
\n $[rev x]@[] = rev$
\n $[rev x]@[] \rightarrow$
\n $[rev x]@[] \rightarrow$ <

$$
A := a; B := b; C := 1;
$$

WHILE $B \neq 0$
DO
WHILE (B mod 2 = 0)
DO

$$
A := A * A;
$$

$$
B := B \text{ div } 2;
$$

OD

$$
C := C * A;
$$

$$
B := B - 1
$$
OD

Try with $b = 10 = 2^1 + 2^3$ or $b = 12 = 2^2 + 2^3$ (and e.g. a=3)

 $A := a: B := b: C := 1$;

WHILE $B \neq 0$ DO

WHILE $(B \mod 2 = 0)$

$$
DO
$$

\n
$$
A := A * A;
$$

\n
$$
B := B \text{ div } 2;
$$

\n
$$
OD
$$

\n
$$
C := C * A;
$$

\n
$$
B := B - 1
$$

\n
$$
OD
$$

Try with $b = 10 = 2^1 + 2^3$ or $b = 12 = 2^2 + 2^3$ (and e.g. a=3)

 ${ a \geq 0 \wedge b \geq 0 }$ $A := a: B := b: C := 1$;

WHILE $B \neq 0$ DO

WHILE $(B \mod 2 = 0)$

$$
DO
$$

\n
$$
A := A * A;
$$

\n
$$
B := B \text{ div } 2;
$$

\n
$$
O D
$$

\n
$$
C := C * A;
$$

\n
$$
B := B - 1
$$

\n
$$
O D
$$

\n
$$
\{ C = a^b \}
$$

Try with $b = 10 = 2^1 + 2^3$ or $b = 12 = 2^2 + 2^3$ (and e.g. a=3)

```
{ a > 0 \land b > 0 }A := a: B := b: C := 1;
INV { a<sup>b</sup> = C * A<sup>B</sup> }WHILE B \neq 0DO
INV { a<sup>b</sup> = C * A<sup>B</sup> }WHILE (B mod 2 = 0)
      DO
      A := A * A;
      B := B div 2;
      OD
   C := C * A;
   B = B - 1OD
 \{ C = a^b \}
```


Try with $b = 10 = 2^1 + 2^3$ or $b = 12 = 2^2 + 2^3$ (and e.g. a=3)

 ${ a > 0 \land b > 0 }$ $A := a$; $B := b$; $C := 1$; $a^b = 1 * a^b$ $INV { a^b = C * A^B }$ WHILE $B \neq 0$ $b = C \ast A^B \wedge B \neq 0 \longrightarrow \; a^b = (C \ast A) \ast A^{B-1}$ DO $INV { a^b = C * A^B }$ WHILE (B mod $2 = 0$) $\mathcal{A}^{b} = C * \mathcal{A}^{B} \wedge B \bmod 2 = 0 \longrightarrow \mathcal{A}^{b} = C * (\mathcal{A} * \mathcal{A})^{B \; \mathsf{div} \; 2}$ DO $A := A * A$; $B := B$ *div* 2; OD $C := C * A$; $B = B - 1$ OD *a* $\mathcal{P} = C \ast \mathcal{A}^B \wedge B = 0 \longrightarrow \ C = a^b$ $\{ C = a^b \}$

$$
l := 0; u := length A - 1; A := a
$$

WHILE $l \le u$
DO
WHILE $l < length A \land A! l \le piv DO l := l + 1 OD;$
WHILE $0 < u \land piv \le A!u DO u := u - 1 OD;$
IF $l \le u$ THEN $A := A[l := A!u, u := A!I]$ ELSE SKIP FI
OD

sw

$$
l := 0; u := \text{length } A - 1; A := a
$$

WHILE $l \le u$
DO
WHILE $l < \text{length } A \land A! l \le \text{piv DO } l := l + 1 \text{ OD};$

WHILE 0 < *u* ∧ *piv* ≤ *A*!*u* DO *u* := *u* − 1 OD; IF $l \le u$ THEN $A := A[l := A!u, u := A!i]$ ELSE SKIP FI OD { *LEQ A u* ∧ *EQ A u l* ∧ *GEQ A l* ∧ *A* permutes *a* }

LEQ A n = ∀*k*. *k* < *n* −→ *A*!*k* ≤ *piv GEQ A n* = \forall *k. n* < *k* < *length A* → *A*!*k* > *piv EQ A n m* = \forall *k*. *n* ≤ *k* ≤ *m* → *A*!*k* = *piv*

{ 0 < *length A* } *l* := 0; *u* := *length A* − 1; *A* := *a*

WHILE $l < u$ DO

WHILE $l <$ *length* $A \wedge A/l <$ *piv* DO $l := l + 1$ OD;

WHILE 0 < *u* ∧ *piv* ≤ *A*!*u* DO *u* := *u* − 1 OD; IF $l < u$ THEN $A := A[l := A|u, u := A|l|$ ELSE SKIP FI OD { *LEQ A u* ∧ *EQ A u l* ∧ *GEQ A l* ∧ *A* permutes *a* }

LEQ A n = ∀*k*. *k* < *n* −→ *A*!*k* ≤ *piv GEQ A n* = \forall *k. n* < *k* < *length A* → *A*!*k* > *piv EQ A n m* = \forall *k. n* ≤ *k* ≤ *m* → *A*!*k* = *piv*

{ 0 < *length A* } *l* := 0; *u* := *length A* − 1; *A* := *a* INV { *LEQ A l* ∧ *GEQ A u* ∧ *u* < *length A* ∧ *l* ≤ *length A* ∧ *A* permutes *a*} WHILE $l < u$ DO

INV { *LEQ A l* ∧ *GEQ A u* ∧ *u* < *length A* ∧ *l* ≤ *length A* ∧ *A* permutes *a*} WHILE $l <$ *length* $A \wedge A/l <$ *piv* DO $l := l + 1$ OD;

INV { *LEQ A l* ∧ *GEQ A u* ∧ *u* < *length A* ∧ *l* ≤ *length A* ∧ *A* permutes *a*} WHILE 0 < *u* ∧ *piv* ≤ *A*!*u* DO *u* := *u* − 1 OD;

IF $l < u$ THEN $A := A[l := A|u, u := A|l|$ ELSE SKIP FI OD

{ *LEQ A u* ∧ *EQ A u l* ∧ *GEQ A l* ∧ *A* permutes *a* }

Reminder: **datatype** ref = Ref int | Null Pointer access: p→field Pointer update: p→field :== v

Definition:

"*List nxt p Ps*′′ is a linked list, starting at pointer *p* following the next pointer through the function *nxt*, and where *Ps* contains the list of the pointers of the linked list.

{ *List nxt p Ps* ∧ *X* ∈ *Ps* }

WHILE $p \neq$ *Null* \land $p \neq$ *Ref X*

$$
\begin{array}{c}\n\mathsf{DO} \\
\rho := \rho \to nxt; \\
\mathsf{OD}\n\end{array}
$$

Reminder: **datatype** ref = Ref int | Null Pointer access: p→field

Pointer update: p→field :== v

Definition:

"*List nxt p Ps*′′ is a linked list, starting at pointer *p* following the next pointer through the function *nxt*, and where *Ps* contains the list of the pointers of the linked list.

{ *List nxt p Ps* ∧ *X* ∈ *Ps* }

WHILE $p \neq$ *Null* \land $p \neq$ *Ref X*

DO $p := p \rightarrow nxt$; OD

 $\{ p = \text{Ref } X \}$

Reminder: **datatype** ref = Ref int | Null Pointer access: p→field

Pointer update: p→field :== v

Definition:

"*List nxt p Ps*′′ is a linked list, starting at pointer *p* following the next pointer through the function *nxt*, and where *Ps* contains the list of the pointers of the linked list.

{ *List nxt p Ps* ∧ *X* ∈ *Ps* }

WHILE $p \neq$ *Null* \land $p \neq$ *Ref X*

DO $p := p \rightarrow nxt$; OD

 $\{ p = \text{Ref } X \}$

Reminder:

datatype ref = Ref int | Null Pointer access: p→field Pointer update: p→field :== v

Definition:

"*List nxt p Ps*′′ is a linked list, starting at pointer *p* following the next pointer through the function *nxt*, and where *Ps* contains the list of the pointers of the linked list.

{ *List nxt p Ps* ∧ *X* ∈ *Ps* } INV { ∃*Qs*. *List nxt p Qs* ∧ *X* ∈ *Qs*} WHILE $p \neq$ *Null* \land $p \neq$ *Ref X*

DO $p := p \rightarrow nxt$; OD

 $\{ p = \text{Ref } X \}$

Reminder:

datatype ref = Ref int | Null Pointer access: p→field Pointer update: p→field :== v

Definition:

"*List nxt p Ps*′′ is a linked list, starting at pointer *p* following the next pointer through the function *nxt*, and where *Ps* contains the list of the pointers of the linked list.

{ *List nxt p Ps* ∧ *X* ∈ *Ps* } ∃*Qs*. *List nxt p Qs* ∧ *X* ∈ *Qs* INV { ∃*Qs*. *List nxt p Qs* ∧ *X* ∈ *Qs*} WHILE $p \neq$ *Null* \land $p \neq$ *Ref X* \exists *Qs*. *List nxt* p *Qs* \land *X* \in *Qs* $∧p \neq$ *Null* $∧p \neq$ *Ref X* → ∃*Qs*. *List nxt* (*p* → *nxt*) *Qs* ∧ *X* ∈ *Qs* DO $p := p \rightarrow nxt$; OD ∃*Qs*. *List nxt p Qs* ∧ *X* ∈ *Qs* $∧(p = Null ∨ p = Ref X) → p = Ref X$ $\{ p = \text{Ref } X \}$

What is is Isabelle function doing?

fun
$$
f :: 'a
$$
 list \Rightarrow' a list \Rightarrow' a list where

\n $f \parallel ys = ys \parallel f \times s \parallel = xs \parallel f \times x \text{ s}$

\n $f \left(x \# xs \right) \left(y \# ys \right) = x \# y \# f \times s \text{ s}$

 O_{TIS}

What is is Isabelle function doing?

fun splice :: ′*a list* ⇒′ *a list* ⇒′ *a list where splice* [] *ys* = *ys*| *splice* xs $|1 = xs|$ *splice* $(x \# xs)$ $(y \# ys) = x \# y \# f$ *xs* ys

What is is Isabelle function doing?

fun splice :: ′*a list* ⇒′ *a list* ⇒′ *a list where splice* [] *ys* = *ys*| *splice* xs $\vert \vert = xs \vert$ *splice* $(x \# xs)$ $(y \# ys) = x \# y \# f$ *xs* ys

Let's write it with linked lists!

{ *List nxt p Ps* ∧ *List nxt q Qs* ∧ (*set Ps* ∩ *set Qs*) = {} ∧ *size Qs* ≤ *size Ps* }

{ *List nxt p* (*splice Ps Qs*) }

{ *List nxt p Ps* ∧ *List nxt q Qs* ∧ (*set Ps* ∩ *set Qs*) = {} ∧ *size Qs* ≤ *size Ps* } *pp* := *p*;

WHILE $q \neq$ *Null* DO $qq := q \rightarrow n$ xt; $q \rightarrow n$ xt $:= pp \rightarrow n$ xt; $pp \rightarrow n$ xt $= q$; $pp := q \rightarrow n$ xt; $q := qq$; OD { *List nxt p* (*splice Ps Qs*) }

List nxt p Ps = *Path nxt p Ps Null Path nxt p Ps Null* is a linked list from *p* to *q* following function *nxt* and containing list of pointers *Ps*

{ *List nxt p Ps* ∧ *List nxt q Qs* ∧ (*set Ps* ∩ *set Qs*) = {} ∧ *size Qs* ≤ *size Ps* } *pp* := *p*; INV {

} WHILE $q \neq$ *Null* DO $qq := q \rightarrow n$ xt; $q \rightarrow n$ xt $:= pp \rightarrow n$ xt; $pp \rightarrow n$ xt $= q$; $pp := q \rightarrow n$ xt; $q := qq$; OD { *List nxt p* (*splice Ps Qs*) }

List nxt p Ps = *Path nxt p Ps Null Path nxt p Ps Null* is a linked list from *p* to *q* following function *nxt* and containing list of pointers *Ps*

{ *List nxt p Ps* ∧ *List nxt q Qs* ∧ (*set Ps* ∩ *set Qs*) = {} ∧ *size Qs* ≤ *size Ps* } *pp* := *p*; INV { ∃*PPs List nxt pp PPs*

While
$$
q \neq \text{Null}
$$

\nDO

\n $qq := q \rightarrow nxt; q \rightarrow nxt := pp \rightarrow nxt; pp \rightarrow nxt = q; pp := q \rightarrow nxt; q := qq;$

\nOD

\n{ List nxt p (splice Ps Qs)}

List nxt p Ps = *Path nxt p Ps Null Path nxt p Ps Null* is a linked list from *p* to *q* following function *nxt* and containing list of pointers *Ps*

{ *List nxt p Ps* ∧ *List nxt q Qs* ∧ (*set Ps* ∩ *set Qs*) = {} ∧ *size Qs* ≤ *size Ps* } *pp* := *p*; INV { ∃*PPs QQs List nxt pp PPs* ∧ *List nxt q QQs*

While
$$
q \neq \text{Null}
$$

\nDO

\n $qq := q \rightarrow nxt; q \rightarrow nxt := pp \rightarrow nxt; pp \rightarrow nxt = q; pp := q \rightarrow nxt; q := qq;$

\nOD

\n{ List nxt p (splice Ps Qs)}

List nxt p Ps = *Path nxt p Ps Null Path nxt p Ps Null* is a linked list from *p* to *q* following function *nxt* and containing list of pointers *Ps*

{ *List nxt p Ps* ∧ *List nxt q Qs* ∧ (*set Ps* ∩ *set Qs*) = {} ∧ *size Qs* ≤ *size Ps* } *pp* := *p*; INV { ∃*PPs QQs PPPs*. *List nxt pp PPs* ∧ *List nxt q QQs* ∧ *Path nxt p PPPs pp*

While
$$
q \neq \text{Null}
$$

\nDO

\n $qq := q \rightarrow nxt; q \rightarrow nxt := pp \rightarrow nxt; pp \rightarrow nxt = q; pp := q \rightarrow nxt; q := qq;$

\nOD

\n{ List nxt p (splice Ps Qs)}

List nxt p Ps = *Path nxt p Ps Null Path nxt p Ps Null* is a linked list from *p* to *q* following function *nxt* and containing list of pointers *Ps*

{ *List nxt p Ps* ∧ *List nxt q Qs* ∧ (*set Ps* ∩ *set Qs*) = {} ∧ *size Qs* ≤ *size Ps* } *pp* := *p*; INV { ∃*PPs QQs PPPs*. *List nxt pp PPs* ∧ *List nxt q QQs* ∧ *Path nxt p PPPs pp* ∧ *PPPs*@*splice PPs QQs* = *splice Ps Qs* } WHILE $q \neq$ *Null* DO $qq := q \rightarrow nxt; q \rightarrow nxt := pp \rightarrow nxt; pp \rightarrow nxt = q; pp := q \rightarrow nxt; q := qq;$ OD { *List nxt p* (*splice Ps Qs*) }

List nxt p Ps = *Path nxt p Ps Null Path nxt p Ps Null* is a linked list from *p* to *q* following function *nxt* and containing list of pointers *Ps*

{ *List nxt p Ps* ∧ *List nxt q Qs* ∧ (*set Ps* ∩ *set Qs*) = {} ∧ *size Qs* ≤ *size Ps* } *pp* := *p*; INV { ∃*PPs QQs PPPs*. *size QQs* ≤ *size PPs* ∧ *List nxt pp PPs* ∧ *List nxt q QQs* ∧ *Path nxt p PPPs pp* ∧ *PPPs*@*splice PPs QQs* = *splice Ps Qs* } WHILE $q \neq$ *Null* DO $qq := q \rightarrow nxt; q \rightarrow nxt := pp \rightarrow nxt; pp \rightarrow nxt = q; pp := q \rightarrow nxt; q := qq;$ OD { *List nxt p* (*splice Ps Qs*) }

Example 8

List nxt p Ps = *Path nxt p Ps Null Path nxt p Ps Null* is a linked list from *p* to *q* following function *nxt* and containing list of pointers *Ps*

{ *List nxt p Ps* ∧ *List nxt q Qs* ∧ (*set Ps* ∩ *set Qs*) = {} ∧ *size Qs* ≤ *size Ps* } *pp* := *p*; INV { ∃*PPs QQs PPPs*. *size QQs* ≤ *size PPs* ∧ *List nxt pp PPs* ∧ *List nxt q QQs* ∧ *Path nxt p PPPs pp* ∧ *PPPs*@*splice PPs QQs* = *splice Ps Qs* ∧ *set PPs* ∩ *set QQs* = {} ∧ *distinct PPPs* ∧ *set PPPs* ∩ (*set PPs* ∪ *set QQs*) = {} } WHILE $q \neq$ *Null* DO $qq := q \rightarrow nxt; q \rightarrow nxt := pp \rightarrow nxt; pp \rightarrow nxt = q; pp := q \rightarrow nxt; q := qq;$ OD { *List nxt p* (*splice Ps Qs*) }

A2 Recap

Assignment 2 is now marked.

→ Biggest frustration: *nat* arithmetic.

- **→** Getting the right induction is *very* important.
	- \rightarrow A generalisation of the problem of the right invariant.
- \rightarrow The proofs about to nat require helper lemmas.
- **→** We will release a reference solution (or two) privately.

Assignment 2 is now marked.

- **→** Biggest frustration: *nat* arithmetic.
	- \rightarrow We know & sympathise.
	- \rightarrow Underflow conditions are tricky.
- **→** Getting the right induction is *very* important.
	- \rightarrow A generalisation of the problem of the right invariant.
- \rightarrow The proofs about to nat require helper lemmas.
- **→** We will release a reference solution (or two) privately.

Assignment 2 is now marked.

- **→** Biggest frustration: *nat* arithmetic.
	- \rightarrow We know & sympathise.
	- \rightarrow Underflow conditions are tricky.
- **→** Getting the right induction is *very* important.
	- \rightarrow A generalisation of the problem of the right invariant.
- \rightarrow The proofs about to nat require helper lemmas.

→ e.g. to nat $(2 * n)$, to nat $((2 * n) + 1)$

→ We will release a reference solution (or two) privately.

Exam Prep

Last Time

- ➜ The automated proof method **wp**
- **→** The C Parser and translating C into Simpl
- **→** AutoCorres and translating Simpl into monadic form
- \rightarrow The option and exception monads

Exam

→ 24h take-home exam (same as previous years)

Exam

- \rightarrow 24h take-home exam (same as previous years)
- **→** Open book: can use any passive resource (books, slides, google, etc)
- **→ Not** allowed to ask for help from anyone
- **→ Not** allowed AI assistance for technical support (e.g. ChatGPT).
- → starts 8am AEST, Thursday 28th Nov 2024, ends 7:59am AEST, Friday 29th Nov 2024

Exam

 \rightarrow 24h take-home exam (same as previous years)

- **→** Open book: can use any passive resource (books, slides, google, etc)
- **→ Not** allowed to ask for help from anyone
- **→ Not** allowed AI assistance for technical support (e.g. ChatGPT).
- → starts 8am AEST, Thursday 28th Nov 2024, ends 7:59am AEST, Friday 29th Nov 2024
- \rightarrow Should be doable in about 4-6 hours. The 24h are for flexibility not for you to stay awake actual 24 hours.
- \rightarrow Recommend to start early, finish the easy questions first.
- \rightarrow Take breaks. Don't forget to eat :-)
- **→** If there are clarification questions, make **private** threads on Ed.

Content

a a1 due; *^b* a2 due; *^c* a3 due

We have learned so far...

- $\rightarrow \lambda$ calculus syntax
- \rightarrow free variables, substitution
- \rightarrow *β* reduction
- $\rightarrow \alpha$ and *n* conversion
- \rightarrow β reduction is confluent
- $\rightarrow \lambda$ calculus is very expressive (turing complete)
- $\rightarrow \lambda$ calculus results in an inconsistent logic

We have learned so far...

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- \rightarrow Types and terms in Isabelle

What we have learned so far...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- \rightarrow proof by assumption, by intro rule, elim rule
- \rightarrow safe and unsafe rules
- ➜ indent your proofs! (one space per subgoal)
- ➜ prefer implicit backtracking (chaining) or *rule tac*, instead of *back*
- ➜ *prefer* and *defer*
- ➜ *oops* and *sorry*

HOL

We have learned so far...

- \rightarrow Isar style proofs
- \rightarrow proof, ged
- \rightarrow assumes, shows
- \rightarrow fix, obtain
- \rightarrow moreover, ultimately
- \rightarrow forward, backward
- \rightarrow mixing proof styles

HOL

We have learned today ...

- **→** Defining HOL
- **→** Higher Order Abstract Syntax
- \rightarrow Deriving proof rules
- \rightarrow More automation
- **→** Equations and Term Rewriting

We have seen today...

- **→** Equations and Term Rewriting
- **→** Confluence and Termination of reduction systems
- **→** Term Rewriting in Isabelle

We have learned today ...

- **→** Conditional term rewriting
- **→** Congruence rules
- \rightarrow AC rules
- **→** More on confluence

We have learned today ...

- **→** Sets
- **→** Type Definitions
- \rightarrow Inductive Definitions

 O_{TIS}

We have learned today ...

- **→** Formal background of inductive definitions
- **→** Definition by intersection
- \rightarrow Computation by iteration
- \rightarrow Formalisation in Isabelle

We have seen today ...

- \rightarrow Datatypes
- \rightarrow Primitive recursion
- \rightarrow Case distinction
- \rightarrow Structural Induction

fun

We have seen today ...

- ➜ General recursion with **fun**/**function**
- \rightarrow Induction over recursive functions
- ➜ How **fun** works
- **→** Termination, partial functions, congruence rules

 O_{TIS}

We have seen today ...

- **→** sledgehammer
- \rightarrow nitpick
- \rightarrow quickcheck

{**P**} **. . .** {**Q**}

We have seen today ...

- \rightarrow Syntax of a simple imperative language
- \rightarrow Operational semantics
- **→** Program proof on operational semantics
- \rightarrow Hoare logic rules
- **→** Soundness of Hoare logic

{**P**} **. . .** {**Q**}

We have seen today ...

- \rightarrow Weakest precondition
- \rightarrow Verification conditions
- \rightarrow Example program proofs
- \rightarrow Arrays, pointers

We have seen today

- \rightarrow Deep and shallow embeddings
- \rightarrow Isabelle records
- **→** Nondeterministic State Monad with Failure
- **→** Monadic Weakest Precondition Rules

 O_{TTS}

Today we have seen

- ➜ The automated proof method **wp**
- **→** The C Parser and translating C into Simpl
- **→** AutoCorres and translating Simpl into monadic form
- \rightarrow The option and exception monads

Two last things to mention before the end of the course.

Thanks for being a great audience!

- \rightarrow It's great to see the level of engagement and interesting questions in this course.
- \rightarrow Good luck with the remaining assignment and exam.
- \rightarrow There may be more opportunities to use Isabelle and other theorem provers in research & industry.

Provisional: TS Hiring

Thomas, Miki & Rob work for/with the TS group at UNSW.

TS has funding for some Isabelle and seL4 related projects:

- seL4 specification gap
- seL4 WCET
- seL4 time-protection extensions

