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Practice with invariants!

Recall:
➜ invariants are needed to automate the application of hoare rules
➜ they are used by the weakest precondition calculus to deal with loops

Recall:
➜ an invariant needs to be “enough” (to prove the postcondition)
➜ an invariant needs to be an invariant

➜ “true before the loop”
➜ “if true at the start of an iteration, still true after one iteration”
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Weakest precondition - recall

(P =⇒ pre (i0; i1; i2;) Q) =⇒

{ P } i0; i1; i2; { Q }

{ P }

pre i0 (pre i1 (pre i2 Q)) = pre i1; i2; i3; Q

i0;

pre i1 (pre i2 Q)

i1;

pre i2 Q

i2;

{ Q }
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Invariant - recall

{ P }

P =⇒ I (“true before the loop”)
?? pre (WHILE b INV I DO c OD) = I

WHILE b

INV I I ∧ b =⇒ pre c I
(“if true at the start of an iteration,”)

DO

(“still true after one iteration”)

c

OD

I ∧ ¬ b =⇒ Q (“enough”)

{ Q }
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Example 1

{ a ≥ 0 ∧ b ≥ 0 }
A := 0;

A = 0 1 2 3 4 ...

B := 0;

B = 0 b b+b b+b+b b+b+b+b ...
INV { B = b * A}

WHILE A ̸= a
DO

B := B + b;
A := A + 1

OD

{ B = b ∗ a }
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{ a ≥ 0 ∧ b ≥ 0 }
A := 0;
B := 0;

0 = b ∗ 0 ✓

INV { B = b * A}
WHILE A ̸= a

B = b ∗ A ∧ A ̸= a −→ B + b = b ∗ (A + 1)

DO
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Example 2

{ a ≥ 0 ∧ b ≥ 0 }
A := 0;
B := 0;

0 = b ∗ 0 ✓
INV { B = b * A}

WHILE A < a

B = b ∗ A ∧ A < a −→ B + b = b ∗ (A + 1)

DO

= b ∗ A + b

B := B + b;

= B + b ✓

A := A + 1
OD

B = b ∗ A ∧ A ≥ a −→ B = b ∗ a ???
{ B = b ∗ a }
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Example 2
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Example 3

{ a ≥ 0 ∧ b > 0 }
A := a;

A = a a-1 a-2 a-3 ...

B := 1;

B = 1 b b*b b*b*b ...
= b3 = ba−A

1 = ba−a

INV { B = ba−A}

WHILE A ̸= 0

B = ba−A ∧ A ̸= 0 −→ B ∗ b = ba−(A−1)

DO
B := B ∗ b;
A := A − 1

OD

B = ba−A ∧ A = 0 −→ B = ba

{ B = ba }
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Example 4

{ True }
X := x ;

X = [x0; x1; x2...] [x1; x2...] [x2...] ...

Y := [];

Y = [] x0#[] x1#x0#[] ...
(rev x)@[] = rev x

INV { (rev X )@Y = rev x}

WHILE X ̸= []

(rev X )@Y = rev x ∧ X ̸= [] −→
(rev (tl X ))@((hd X )#Y ) = rev x

DO

= (rev X )@Y

Y := (hd X#Y );

= (rev ((hd X )#(tl X )))@Y

X := tl X
OD

(rev X )@Y = rev x ∧ X = [] −→ Y = rev x
{ Y = rev x }
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Example 5

Try with b = 10 = 21 + 23 or b = 12 = 22 + 23 (and e.g. a=3)

{ a ≥ 0 ∧ b ≥ 0 }

A := a; B := b; C := 1;

ab = 1 ∗ ab

INV { ab = C ∗ AB}

WHILE B ̸= 0

ab = C ∗ AB ∧ B ̸= 0 −→ ab = (C ∗ A) ∗ AB−1

DO

INV { ab = C ∗ AB}

WHILE (B mod 2 = 0)

ab = C ∗ AB ∧ B mod 2 = 0 −→ ab = C ∗ (A ∗ A)B div 2

DO
A := A ∗ A;
B := B div 2;
OD

C := C ∗ A;
B := B − 1

OD

ab = C ∗ AB ∧ B = 0 −→ C = ab

{ C = ab }
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ab = C ∗ AB ∧ B ̸= 0 −→ ab = (C ∗ A) ∗ AB−1

DO

INV { ab = C ∗ AB}

WHILE (B mod 2 = 0)

ab = C ∗ AB ∧ B mod 2 = 0 −→ ab = C ∗ (A ∗ A)B div 2

DO
A := A ∗ A;
B := B div 2;
OD

C := C ∗ A;
B := B − 1

OD

ab = C ∗ AB ∧ B = 0 −→ C = ab

{ C = ab }
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Example 6

LEQ A n = ∀k . k < n −→ A!k ≤ piv
GEQ A n = ∀k . n < k < length A −→ A!k ≥ piv
EQ A n m = ∀k . n ≤ k ≤ m −→ A!k = piv

{ 0 < length A }

l := 0; u := length A − 1;A := a

INV { LEQ A l ∧ GEQ A u ∧ u < length A ∧ l ≤ length A ∧ A permutes a}

WHILE l ≤ u
DO

INV { LEQ A l ∧ GEQ A u ∧ u < length A ∧ l ≤ length A ∧ A permutes a}

WHILE l < length A ∧ A!l ≤ piv DO l := l + 1 OD;

INV { LEQ A l ∧ GEQ A u ∧ u < length A ∧ l ≤ length A ∧ A permutes a}

WHILE 0 < u ∧ piv ≤ A!u DO u := u − 1 OD;

IF l ≤ u THEN A := A[l := A!u, u := A!l] ELSE SKIP FI
OD

{ LEQ A u ∧ EQ A u l ∧ GEQ A l ∧ A permutes a }
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Example 7
Reminder:

datatype ref = Ref int | Null
Pointer access: p→field
Pointer update: p→field :== v

Definition:
“List nxt p Ps′′ is a linked list, starting at pointer p following the next
pointer through the function nxt , and where Ps contains the list of
the pointers of the linked list.

{ List nxt p Ps ∧ X ∈ Ps }

∃Qs. List nxt p Qs ∧ X ∈ Qs
INV { ∃Qs. List nxt p Qs ∧ X ∈ Qs}

WHILE p ̸= Null ∧ p ̸= Ref X

∃Qs. List nxt p Qs ∧ X ∈ Qs
∧p ̸= Null ∧ p ̸= Ref X −→
∃Qs. List nxt (p → nxt) Qs ∧ X ∈ Qs

DO
p := p → nxt ;

OD

∃Qs. List nxt p Qs ∧ X ∈ Qs
∧(p = Null ∨ p = Ref X ) −→ p = Ref X

{ p = Ref X }
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Example 8

What is is Isabelle function doing?

fun f :: ′a list ⇒′ a list ⇒′ a list where
f [] ys = ys|
f xs [] = xs|
f (x#xs) (y#ys) = x#y# f xs ys
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Example 8

What is is Isabelle function doing?

fun splice :: ′a list ⇒′ a list ⇒′ a list where
splice [] ys = ys|
splice xs [] = xs|
splice (x#xs) (y#ys) = x#y# f xs ys

Let’s write it with linked lists!
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Example 8

List nxt p Ps = Path nxt p Ps Null
Path nxt p Ps Null is a linked list from p to q following function nxt and
containing list of pointers Ps

{ List nxt p Ps ∧ List nxt q Qs ∧ (set Ps ∩ set Qs) = {} ∧ size Qs ≤ size Ps }

pp := p;
INV { ∃PPs QQs PPPs. size QQs ≤ size PPs ∧

List nxt pp PPs ∧ List nxt q QQs ∧ Path nxt p PPPs pp
∧ PPPs@splice PPs QQs = splice Ps Qs ∧
set PPs ∩ set QQs = {} ∧ distinct PPPs ∧ set PPPs ∩ (set PPs ∪ set QQs) = {}

}
WHILE q ̸= Null
DO

qq := q → nxt ; q → nxt := pp → nxt ; pp → nxt = q; pp := q → nxt ; q := qq;
OD

{ List nxt p (splice Ps Qs) }
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A2 Recap

Assignment 2 is now marked.
➜ Biggest frustration: nat arithmetic.

➜ We know & sympathise.
➜ Underflow conditions are tricky.

➜ Getting the right induction is very important.
➜ A generalisation of the problem of the right invariant.

➜ The proofs about to nat require helper lemmas.

➜ e.g. to nat (2 ∗ n), to nat ((2 ∗ n) + 1)

➜ We will release a reference solution (or two) privately.
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Last Time

➜ The automated proof method wp
➜ The C Parser and translating C into Simpl
➜ AutoCorres and translating Simpl into monadic form
➜ The option and exception monads
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Exam

➜ 24h take-home exam (same as previous years)

➜ Open book: can use any passive resource (books, slides, google, etc)
➜ Not allowed to ask for help from anyone
➜ Not allowed AI assistance for technical support (e.g. ChatGPT).
➜ starts 8am AEST, Thursday 28th Nov 2024, ends 7:59am AEST, Friday

29th Nov 2024

➜ Should be doable in about 4-6 hours.
The 24h are for flexibility not for you to stay awake actual 24 hours.

➜ Recommend to start early, finish the easy questions first.
➜ Take breaks. Don’t forget to eat :-)
➜ If there are clarification questions, make private threads on Ed.
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29th Nov 2024

➜ Should be doable in about 4-6 hours.
The 24h are for flexibility not for you to stay awake actual 24 hours.

➜ Recommend to start early, finish the easy questions first.
➜ Take breaks. Don’t forget to eat :-)
➜ If there are clarification questions, make private threads on Ed.
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Content

➜ Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

➜ Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b ]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c ]

aa1 due; ba2 due; ca3 due
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We have learned so far...

➜ λ calculus syntax
➜ free variables, substitution
➜ β reduction
➜ α and η conversion
➜ β reduction is confluent
➜ λ calculus is very expressive (turing complete)
➜ λ calculus results in an inconsistent logic
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We have learned so far...

➜ Simply typed lambda calculus: λ→

➜ Typing rules for λ→, type variables, type contexts
➜ β-reduction in λ→ satisfies subject reduction
➜ β-reduction in λ→ always terminates
➜ Types and terms in Isabelle
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What we have learned so far...

➜ natural deduction rules for ∧, ∨, −→, ¬, iff...
➜ proof by assumption, by intro rule, elim rule
➜ safe and unsafe rules

➜ indent your proofs! (one space per subgoal)
➜ prefer implicit backtracking (chaining) or rule tac, instead of back
➜ prefer and defer
➜ oops and sorry
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We have learned so far...

➜ Isar style proofs
➜ proof, qed
➜ assumes, shows
➜ fix, obtain
➜ moreover, ultimately
➜ forward, backward
➜ mixing proof styles
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We have learned today ...

➜ Defining HOL
➜ Higher Order Abstract Syntax
➜ Deriving proof rules
➜ More automation
➜ Equations and Term Rewriting
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We have seen today...

➜ Equations and Term Rewriting
➜ Confluence and Termination of reduction systems
➜ Term Rewriting in Isabelle
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We have learned today ...

➜ Conditional term rewriting
➜ Congruence rules
➜ AC rules
➜ More on confluence

39 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



COMP4161
Advanced Topics in Software

Verification

{}
Thomas Sewell, Miki Tanaka, Rob Sison

T3/2024



We have learned today ...

➜ Sets
➜ Type Definitions
➜ Inductive Definitions
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We have learned today ...

➜ Formal background of inductive definitions
➜ Definition by intersection
➜ Computation by iteration
➜ Formalisation in Isabelle
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We have seen today ...

➜ Datatypes
➜ Primitive recursion
➜ Case distinction
➜ Structural Induction
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We have seen today ...

➜ General recursion with fun/function
➜ Induction over recursive functions
➜ How fun works
➜ Termination, partial functions, congruence rules
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We have seen today ...

➜ sledgehammer
➜ nitpick
➜ quickcheck
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We have seen today ...

➜ Syntax of a simple imperative language
➜ Operational semantics
➜ Program proof on operational semantics
➜ Hoare logic rules
➜ Soundness of Hoare logic
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We have seen today ...

➜ Weakest precondition
➜ Verification conditions
➜ Example program proofs
➜ Arrays, pointers
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We have seen today

➜ Deep and shallow embeddings
➜ Isabelle records
➜ Nondeterministic State Monad with Failure
➜ Monadic Weakest Precondition Rules
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Today we have seen

➜ The automated proof method wp
➜ The C Parser and translating C into Simpl
➜ AutoCorres and translating Simpl into monadic form
➜ The option and exception monads
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Two Final Announcements

Two last things to mention before the end of the course.

Thanks for being a great audience!
➜ It’s great to see the level of engagement and interesting questions in this

course.
➜ Good luck with the remaining assignment and exam.
➜ There may be more opportunities to use Isabelle and other theorem

provers in research & industry.

58 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Provisional: TS Hiring

Thomas, Miki & Rob work for/with the TS group at UNSW.

TS has funding for some Isabelle and seL4 related projects:
• seL4 specification gap
• seL4 WCET
• seL4 time-protection extensions
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