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Last Time

➜ Deep and shallow embeddings
➜ Isabelle records
➜ Nondeterministic State Monad with Failure
➜ Monadic Weakest Precondition Rules
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Content

➜ Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

➜ Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b ]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c ]

aa1 due; ba2 due; ca3 due
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wp

apply (wp extra wp rules)

Tactic for automatic application of weakest precondition rules

➜ Developed for the seL4 verification proofs
➜ Knows about a huge collection of existing wp rules for monads
➜ Works best when precondition is a schematic variable
➜ related tool: wpc for Hoare reasoning over case statements

When used with AutoCorres, allows automated reasoning about C programs.

Today we will learn about AutoCorres and C verification.
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DEMO

INTRODUCTION TO AUTOCORRES AND WP



Some Context: The L4.verified Project

The seL4 microkernel was verified
functionally correct using Isabelle/HOL.

• Project by “NICTA” @ UNSW.
• One of the largest proof projects,

Isabelle projects, etc.

Initial proof (completed 2009).
• 3 encodings of seL4 in Isabelle.
• 2 proofs of simulation/refinement.

◦ Involve corres & ccorres.

C Model

Executable
Specification

Abstract
Specification

C Source

Executable Binary CPU Model

Security

Confidentiality

Availability

Initialisation
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Relating L4.verified to Best Practice

The L4.verified project is a bit
specialised, but some of these concepts
are universal:
• abstract spec: describes the system

as seen by an external party.

• executable spec: describes the
algorithms of the system somewhat
abstractly.

• implementation: ground model:
encodes the semantics of the real
system in detail.

Think about a binary search tree. Where
would its invariants go?
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The AutoCorres Idea

The big idea of the AutoCorres project:
• Can we handle one layer

automatically?
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A BRIEF OVERVIEW OF C AND SIMPL



C

Main new problems in verifying C programs:

➜ expressions with side effects
➜ more control flow (do/while, for, break, continue, return)
➜ local variables and blocks
➜ functions & procedures
➜ concrete C data types
➜ C memory model and C pointers

C is not a nice language for reasoning.

Things are going to get ugly.

AutoCorres will help.
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C Parser: translates C into Simpl

Simpl: deeply embedded imperative language in Isabelle.

➜ generic imperative language by Norbert Schirmer, TU Munich
➜ state space and basic expressions/statements can be instantiated
➜ has operational semantics
➜ has its own Hoare logic with soundness and completeness proof, plus

automated vcg

C Parser: parses C, produces Simpl definitions in Isabelle

➜ written by Michael Norrish, NICTA and ANU
➜ Handles a non-trivial subset of C
➜ Originally written to verify seL4’s C implementation
➜ AutoCorres is built on top of the C Parser
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Commands in Simpl

datatype (’s, ’p, ’f) com =
Skip

| Basic "’s ⇒ ’s"
| Spec "(’s * ’s) set"
| Seq "(’s, ’p, ’f) com" "(’s, ’p, ’f) com"
| Cond "’s set" "(’s, ’p, ’f) com" "(’s, ’p, ’f) com"
| While "’s set" "(’s, ’p, ’f) com"
| Call ’p
| DynCom "’s ⇒ (’s, ’p, ’f) com"
| Guard ’f "’s set" "(’s, ’p, ’f) com"
| Throw
| Catch "(’s, ’p, ’f) com" "(’s, ’p, ’f) com"

’s = state, ’p = procedure names, ’f = faults
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Expressions with side effects

a = a * b; x = f(h); i = ++i - i++; x = f(h) + g(x);

➜ a = a * b — Fine: easy to translate into Isabelle
➜ x = f(h) — Fine: may have side effects, but can be translated sanely.
➜ i = ++i - i++ — Seriously? What does that even mean? Make this an

error, force programmer to write instead:
i0 = i; i++; i = i - i0; (or just i = 1)

➜ x = f(h) + g(x) — Ok if g and h do not have any side effects
=⇒ Prove all functions in expressions are side-effect free

Alternative:
Explicitly model nondeterministic order of execution in expressions.
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Control flow

do { c } while (condition );

automatically translates into:

c; while (condition) { c }

Similarly:

fo r (init; condition; increment) { c }

becomes

init; while (condition) { c; increment; }
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More control flow: break/continue

while (condition) {

foo;

i f (Q) continue;
bar;

i f (P) break;
}

Non-local control flow: continue goes to condition, break goes to
end.
Can be modelled with exceptions:

➜ throw exception ’continue’, catch at end of body.
➜ throw exception ’break’, catch after loop.
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Break/continue

Break/continue example becomes:

t r y {

while (condition) {

t r y {

foo;

i f (Q) { exception = ’continue ’; throw; }

bar;

i f (P) { exception = ’break’; throw; }

} catch { i f (exception == ’continue ’) SKIP else throw; }

}

} catch { i f (exception == ’break ’) SKIP else throw; }

This is not C any more. But it models C behaviour!

Need to be careful that only the translation has access to exception
state.
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Return

i f (P) re turn x;

foo;

re turn y;

Similar non-local control flow.

Similar solution: use throw/try/catch
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Return

i f (P) re turn x;

foo;

re turn y;

Similar non-local control flow. Similar solution: use throw/try/catch

t r y {
i f (P) { return_val = x; exception = ’return ’; throw; }
foo;
return_val = y; exception = ’return ’; throw;

} catch {
SKIP

}
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AUTOCORRES



AutoCorres

AutoCorres: reduces the pain in reasoning about C code

➜ Written by David Greenaway, NICTA and UNSW
➜ Converts C/Simpl into (monadic) shallow embedding in Isabelle
➜ Shallow embedding easier to reason about than Simpl

Is self-certifying: produces Isabelle theorems proving its own
correctness

For each Simpl definition C and its generated shallow embedding A:
➜ AutoCorres proves an Isabelle theorem stating that C refines A
➜ Every behaviour of C has a corresponding behaviour of A
➜ Refinement guarantees that properties proved about A will also hold

for C.
➜ (Provided that A never fails. c.f. Total Correctness)
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AutoCorres Process

C99

Monadic
Conversion 

Local Var
Lifting

Type
Specialisation

L1Simpl

Parsing

L2 HL WA Output

Word
Abstraction

Heap
Abstraction

L1: initial monadic shallow embedding

L2: local variables introduced by λ-bindings

HL: heap state abstracted into a set of typed heaps

WA: machine words abstracted to idealised integers or nats

Output: human-readable output with type strengthening, polish

On-the-fly proof:
Simpl refines L1 refines L2 refines HL refines WA refines Output

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Example: C99

We will use the following example program to illustrate each of the
phases.

unsigned some_func(unsigned *a, unsigned *b, unsigned c) {

unsigned *p = NULL;

i f (c > 10u){

p = a;

} else {

p = b;

}

re turn *p;

}
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Example: Simpl

some_func_body ≡
TRY

´p :== ptr_coerce (Ptr (scast 0));;
IF 0xA < ´c THEN

´p :== ´a
ELSE

´p :== ´b
FI ;;
Guard C_Guard {|c_guard ´p|}
(creturn global_exn_var_ ’_update ret__unsigned_ ’_update

(λs. h_val (hrs_mem (t_hrs_ ’ (globals s))) (p_’ s)));;
Guard DontReach {} SKIP

CATCH SKIP END
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Example: L1 (monadic shallow embedding)

l1_some_func ≡ L1 seq ( L 1 i n i t ret__unsigned_ ’_update)
(L1 seq (L1 modify (p_ ’_update (λ_. ptr_coerce (Ptr (scast 0)))))

(L1 seq (L1 condi t ion (λs. 0xA < c_’ s)
(L1 modify (λs. s(|p_ ’ := a_ ’ s|)))
(L1 modify (λs. s(|p_ ’ := b_ ’ s|))))

(L1 seq (L1 guard (λs. c_guard (p_ ’ s)))
(L1 seq (L1 modify (λs. s(|ret__unsigned_ ’ :=

h_val (hrs_mem (t_hrs_ ’ (globals s))) (p_’ s)|)))
(L1 modify (global_exn_var_ ’_update (λ_. Return )))))))

State type is the same as Simpl, namely a record with fields:
➜ globals: heap and type information
➜ a ’, b ’, c ’, p ’ (parameters and local variables)
➜ ret unsigned ’, global exn var ’ (return value, exception type)
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Example: L2 (local variables lifted)

l2_some_func a b c ≡
L2 seq (L2 condi t ion (λs. 0xA < c)

(L2 gets (λs. a) [’’p’’])

(L2 gets (λs. b) [’’p’’]))

(λp. L2 seq (L2 guard (λs. c_guard p))

(λ_. L2 gets (λs. h_val (hrs_mem (t_hrs_ ’ s)) p) [’’ret ’’]))

State is a record with just the globals field
➜ function now takes its parameters as arguments
➜ local variable p now passed via λ-binding
➜ L2 gets annotated with local variable names
➜ This ensures preservation by later AutoCorres phases
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Example: HL (heap abstracted into typed heaps)

hl_some_func a b c ≡
L2 seq (L2 condi t ion (λs. 0xA < c)

(L2 gets (λs. a) [’’p’’])

(L2 gets (λs. b) [’’p’’]))

(λr. L2 seq (L2 guard (λs. is_valid_w32 s r))

(λ_. L2 gets (λs. heap_w32 s r) [’’ret ’’]))

State is a record with a set of is valid and heap fields:
➜ These store pointer validity and heap contents respectively, per type
➜ above example has only 32-bit word pointers
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Heap Abstraction

f300

f301

f302

f303

f304

f305

f306

heap values

type tags

word8 heap

word16 heap

f2ff 44

47

e2

9d

a4

48

59

21

w8

w16

▴

w8

w16

▴

44

a4

e247

misaligned

   C Memory Model      AutoCorres Typed Heaps

C Memory Model: by Harvey Tuch
➜ Heap is a mapping from 32-bit addresses to bytes: 32 word⇒ 8 word
➜ Heap Type Description stores type information for each heap location
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Example: WA (words abstracted to ints and nats)

wa_some_func a b c ≡
L2 seq (L2 condi t ion (λs. 10 < c)

(L2 gets (λs. a) [’’p’’])

(L2 gets (λs. b) [’’p’’]))

(λr. L2 seq (L2 guard (λs. is_valid_w32 s r))

(λ_. L2 gets (λs. unat (heap_w32 s r)) [’’ret ’’]))

Word abstraction: C int → Isabelle int, C unsigned → Isabelle nat
➜ Guards inserted to ensure absence of unsigned underflow and overflow
➜ Signed under/overflow already has guards (it has undefined behaviour)

In the example, the unsigned argument c is now of type nat
➜ The function also returns a nat result
➜ The heap is not abstracted, hence the call to unat
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Example: Output (type strengthening and polish)

some_func ’ a b c ≡
DO p ← oreturn ( i f 10 < c then a else b);

oguard (λs. is_valid_w32 s p);

ogets (λs. unat (heap_w32 s p))

OD

Type Strengthening:
➜ Tries to convert output to a more restricted monad
➜ The above is in the option monad because it doesn’t modify the state,

but might fail
➜ The type of the option monad implies it cannot modify state

Polish:
➜ Simplify output as much as possible
➜ The condition has been rewritten to a return because the condition 10

< c doesn’t depend on the state
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Type Strengthening

Example:

unsigned zero(void ){ re turn 0u; }

Monad Type Kind Type Example
pure Pure function ’a 0
gets Read-only, non-failing ’s ⇒ ’a λs. 0
option Read-only function ’s ⇒ ’a option oreturn 0

Effect information now encoded in function types

Later proofs get this information for free!

Can be controlled by the ts force option of AutoCorres
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(Reader) Option Monad

Another standard monad, familiar from e.g. Haskell

Return:
oreturn x ≡ λs. Some x

Bind:
obind a b ≡ λs. case a s of None ⇒ None | Some r ⇒ b r s

➜ Infix notation: |>>
➜ Do notation: DO ... OD

Hoare Logic:
ovalid P f Q ≡ ∀ s r. P s ∧ f s = Some r −→ Q r s

ovalid (P x) (oreturn x) P

∧
r. ovalid (R r) (g r) Q ovalid P f R

ovalid P (f |>> g) Q
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Exception Monad

Exceptions used to model early return, break and continue.

Exception Monad: ’s ⇒ ((’e + ’a) × ’s) set × bool
➜ Instance of the nondeterministic state monad: return-value type is sum

type ’e + ’a
➜ Sum Type Constructors: Inl :: ’e ⇒ ’e + ’a Inr :: ’a ⇒ ’e + ’a
➜ Convention: Inl used for exceptions, Inr used for ordinary return-values

Basic Monadic Operations

returnOk x ≡ return (Inr x) throwError e ≡ return (Inl e)
lift b ≡ (λx. case x of Inl e ⇒ throwError e | Inr r ⇒ b r)

bindE: a >>=E b ≡ a >>= (lift b) Do notation: doE ... odE
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Hoare Rules for Exceptions

New kind of Hoare triples to model normal and exceptional cases:

{|P |} f {|Q |}, {|E |}

≡
{|P |} f {|λx s. case x of Inl e ⇒ E e s | Inr r ⇒ Q r s |}

Weakest Precondition Rules:

{|P x|} returnOk x {|P|},{|E|} {|E e|} throwError e {|P|},{|E|}∧
x. {|R x|} b x {|Q|},{|E|} {|P|} a {|R|},{|E|}

{|P|} a >>=E b {|Q|},{|E|}

(other rules analogous)
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Hoare Rules for Exceptions

New kind of Hoare triples to model normal and exceptional cases:

{|P |} f {|Q |}, {|E |}
≡

{|P |} f {|λx s. case x of Inl e ⇒ E e s | Inr r ⇒ Q r s |}

Weakest Precondition Rules:

{|P x|} returnOk x {|P|},{|E|} {|E e|} throwError e {|P|},{|E|}∧
x. {|R x|} b x {|Q|},{|E|} {|P|} a {|R|},{|E|}

{|P|} a >>=E b {|Q|},{|E|}

(other rules analogous)
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Today we have seen

➜ The automated proof method wp
➜ The C Parser and translating C into Simpl
➜ AutoCorres and translating Simpl into monadic form
➜ The option and exception monads
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