COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

→ Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
C verification	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

We used a datatype com to represent the syntax of IMP.

→ We then defined semantics over this datatype.

We used a **datatype** *com* to represent the **syntax** of IMP.

→ We then defined semantics over this datatype.

This is called a deep embedding:

→ separate representation of language terms and their semantics.

We used a **datatype** *com* to represent the **syntax** of IMP.

→ We then defined semantics over this datatype.

This is called a deep embedding:

→ separate representation of language terms and their semantics.

Advantages:

- → Prove general theorems about the **language**, not just of programs.
- → e.g. expressiveness, correct compilation, inference completeness ...
- → usually by induction over the syntax or semantics.

We used a **datatype** *com* to represent the **syntax** of IMP.

→ We then defined semantics over this datatype.

This is called a **deep embedding**:

→ separate representation of language terms and their semantics.

Advantages:

- → Prove general theorems about the **language**, not just of programs.
- → e.g. expressiveness, correct compilation, inference completeness ...
- → usually by induction over the syntax or semantics.

Disadvantages:

- → Semantically equivalent programs are not obviously equal.
- → e.g. "IF True THEN SKIP ELSE SKIP = SKIP" is not a true theorem.
- → Many concepts already present in the logic must be reinvented.

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions *state* ⇒ *state*

SKIP ≡

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

SKIP $\equiv \lambda s. s$

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

SKIP $\equiv \lambda s. s$

IF b THEN c ELSE d \equiv

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

SKIP $\equiv \lambda s. s$

IF b THEN c ELSE d $\equiv \lambda$ s. if b s then c s else d s

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions *state* ⇒ *state*

 $SKIP \equiv \quad \lambda s. \ s$ IF b THEN c ELSE d $\equiv \quad \lambda s. \ if \ b \ s \ then \ c \ s \ else \ d \ s$

- → "IF True THEN SKIP ELSE SKIP = SKIP" is now a true statement.
- → can use the simplifier to do semantics-preserving program rewriting.

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions *state* ⇒ *state*

 $SKIP \equiv \quad \lambda s. \ s$ IF b THEN c ELSE d $\equiv \quad \lambda s.$ if b s then c s else d s

- → "IF True THEN SKIP ELSE SKIP = SKIP" is now a true statement.
- → can use the simplifier to do semantics-preserving program rewriting.

Today: a shallow embedding for (interesting parts of) C semantics

Records are *n*-tuples with named components

Records are *n*-tuples with named components

Example:

record A = a :: nat

b :: int

Records are *n*-tuples with named components

Example:

record A = a :: nat

b :: int

→ Selectors: $a :: A \Rightarrow nat$, $b :: A \Rightarrow int$, a r = Suc 0

Records are *n*-tuples with named components

Example:

```
record A = a :: nat
b :: int
```

- → Selectors: $a :: A \Rightarrow nat$, $b :: A \Rightarrow int$, a r = Suc 0
- → Constructors: (|a = Suc 0, b = -1|)

Records are *n*-tuples with named components

Example:

```
record A = a :: nat
b :: int
```

- → Selectors: $a :: A \Rightarrow nat$, $b :: A \Rightarrow int$, a r = Suc 0
- → Constructors: (|a = Suc 0, b = -1|)
- → Update: r(|a| = Suc 0 |), $b_update (\lambda b. b + 1) r$

Records are *n*-tuples with named components

Example:

```
record A = a :: nat

b :: int

\Rightarrow Selectors: a :: A \Rightarrow nat, b :: A \Rightarrow int, a r = Suc 0

\Rightarrow Constructors: (|a = Suc 0, b = -1 |)

\Rightarrow Update: r(|a := Suc 0), b_{-}update (\lambda b. b + 1) r
```

Records are extensible:

Records are *n*-tuples with named components

Example:

```
record A = a :: nat
b :: int

Selectors: a :: A \Rightarrow nat, b :: A \Rightarrow int, a r = \text{Suc } 0

Constructors: (| a = Suc 0, b = -1 |)

Update: r(| a := Suc 0 |), b_update (\lambda b. b + 1) r
```

Records are extensible:

record B = A +
$$c :: nat \ list$$
 (| a = Suc 0, b = -1, c = [0,0] |)

DEMO

Shallow embedding suitable for (a useful fragment of) C.

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

- → Access to volatile variables, external APIs: Nondeterminism
- → Undefined behaviour: Failure
- → Early exit (return, break, continue): Exceptional control flow

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

- → Access to volatile variables, external APIs: Nondeterminism
- → Undefined behaviour: Failure
- → Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

- → Access to volatile variables, external APIs: Nondeterminism
- → Undefined behaviour: Failure
- → Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 microkernel verification work.

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

- → Access to volatile variables, external APIs: Nondeterminism
- → Undefined behaviour: Failure
- → Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 microkernel verification work.

AutoCorres: verified translation from deeply embedded C to monadic representation

→ Specifically designed for humans to do proofs over.

Model the **semantics** of a (deterministic) computation as a function

$$\ddot{s}\Rightarrow(\ddot{a}\times\ddot{s})$$

Model the **semantics** of a (deterministic) computation as a function

$$\dot{s} \Rightarrow (\dot{a} \times \dot{s})$$

The computation operates over a **state** of type 's:

→ Includes all global variables, external devices, etc.

Model the **semantics** of a (deterministic) computation as a function

$$\dot{s} \Rightarrow (\dot{a} \times \dot{s})$$

The computation operates over a **state** of type 's:

→ Includes all global variables, external devices, etc.

The computation also yields a **return value** of type 'a:

→ models e.g. exit status and return values

Model the **semantics** of a (deterministic) computation as a function

$$\dot{s} \Rightarrow (\dot{a} \times \dot{s})$$

The computation operates over a **state** of type 's:

→ Includes all global variables, external devices, etc.

The computation also yields a **return value** of type 'a:

→ models e.g. exit status and return values

return – the computation that leaves the state unchanged and returns its argument:

return
$$x \equiv \lambda s$$
.

Model the **semantics** of a (deterministic) computation as a function

$$\dot{s} \Rightarrow (\dot{a} \times \dot{s})$$

The computation operates over a **state** of type 's:

→ Includes all global variables, external devices, etc.

The computation also yields a **return value** of type 'a:

→ models e.g. exit status and return values

return – the computation that leaves the state unchanged and returns its argument:

return
$$x \equiv \lambda s$$
. (x,s)

get – returns the entire state without modifying it: get $\equiv \lambda s$.

get - returns the entire state without modifying it:

get $\equiv \lambda s. (s,s)$

get – returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv$$

get - returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_-$$
. ((), s)

get – returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

bind – sequences two computations; 2nd takes the first's result:

$$c>>=d\equiv$$

get – returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

bind – sequences two computations; 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

get – returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put – replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

bind – sequences two computations; 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

gets – returns a projection of the state; leaves state unchanged:

gets
$$f \equiv$$

get – returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put – replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

bind – sequences two computations; 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

gets – returns a projection of the state; leaves state unchanged:

gets
$$f \equiv \text{get} \gg = (\lambda s. \text{ return } (f s))$$

get – returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put – replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

bind – sequences two computations; 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

gets – returns a projection of the state; leaves state unchanged:

gets
$$f \equiv \text{get} \gg = (\lambda s. \text{ return } (f s))$$

modify – applies its argument to modify the state; returns ():

modify
$$f \equiv \text{get} \gg = (\lambda s. \text{ put } (f s))$$

Formally: a monad ${\bf M}$ is a type constructor with two operations.

return :: $\alpha \Rightarrow \mathbf{M} \ \alpha$ bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Formally: a monad **M** is a type constructor with two operations.

return :: $\alpha \Rightarrow \mathbf{M} \ \alpha$ bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; b \ x \}$

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; b \ x \}$

Monad Laws:

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; b \ x \}$

Monad Laws:

return-left: (return
$$x > = f$$
) = $f x$

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; b \ x \}$

Monad Laws:

return-left: (return
$$x > = f$$
) = $f x$

return-right:
$$(m \gg = \text{return}) = m$$

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; b \ x \}$

Monad Laws:

return-left: (return x >>= f) = f x

return-right: $(m \gg = \text{return}) = m$

bind-assoc: $((a > = b) > = c) = (a > = (\lambda x. b x > = c))$

State Monad: Example

```
A fragment of C:

void f(int *p) {

   int x = *p;

   if (x < 10) {

      *p = x+1;

   }
```

State Monad: Example

```
record state =
                                   hp :: int ptr \Rightarrow int
A fragment of C:
                             f :: "int ptr \Rightarrow (state \Rightarrow (unit, state))"
void f(int *p) {
                             f p \equiv
    int x = *p;
                             do {
    if (x < 10) {
                                x \leftarrow gets (\lambda s. hp s p);
       *p = x+1;
                                if x < 10 then
                                   modify (hp_update (\lambdah. (h(p := x + 1))))
                                else
                                   return ()
```

Computations can **fail**: $s \Rightarrow ((a \times bool))$

Computations can **fail**: $s \Rightarrow ((a \times bool)$

bind – fails when either computation fails bind $ab \equiv \mathbf{let} ((r,s'),f) = as; ((r'',s''),f') = brs' \mathbf{in} ((r'',s''),f \vee f')$

Computations can **fail**: $s \Rightarrow ((a \times bool)$

bind – fails when either computation fails bind $ab \equiv \mathbf{let} ((r,s'),f) = as; ((r'',s''),f') = brs' \mathbf{in} ((r'',s''),f \vee f')$

fail – the computation that always fails: fail $\equiv \lambda s$. (undefined, True)

Computations can **fail**:
$$s \Rightarrow ((a \times bool))$$

bind – fails when either computation fails bind
$$ab \equiv \mathbf{let} ((r,s'),f) = as; ((r'',s''),f') = brs' \mathbf{in} ((r'',s''),f \vee f')$$

fail - the computation that always fails:

fail $\equiv \lambda$ s. (undefined, True)

assert – fails when given condition is False:

assert $P \equiv if P then return () else fail$

Computations can **fail**:
$$s \Rightarrow ((a \times bool))$$

bind – fails when either computation fails bind
$$ab \equiv \mathbf{let} ((r,s'),f) = as; ((r'',s''),f') = brs' \mathbf{in} ((r'',s''),f \vee f')$$

fail - the computation that always fails:

fail $\equiv \lambda$ s. (undefined, True)

assert - fails when given condition is False:

assert $P \equiv if P then return () else fail$

guard – fails when given condition applied to the state is False: guard $P \equiv get \gg = (\lambda s. \ assert \ (P \ s))$

Guards

Used to assert the absence of undefined behaviour in C

Guards

Used to assert the absence of undefined behaviour in C

→ pointer validity, absence of divide by zero, signed overflow, etc.

Guards

Used to assert the absence of undefined behaviour in C

→ pointer validity, absence of divide by zero, signed overflow, etc.

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \text{ set } \times \text{ bool})$

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \text{ set} \times bool)$

Nondeterminism: computations return a set of possible results.

→ Allows underspecification: e.g. malloc, external devices, etc.

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \text{ set} \times bool)$

Nondeterminism: computations return a set of possible results.

→ Allows underspecification: e.g. malloc, external devices, etc.

bind - runs 2nd computation for all results returned by the first:

bind
$$ab \equiv \lambda s.$$
 ($\{(r",s"). \exists (r',s") \in fst (as). (r",s") \in fst (br's")\}, snd $(as) \lor (\exists (r',s") \in fst (as). snd (br's"))$)$

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \text{ set} \times bool)$

Nondeterminism: computations return a set of possible results.

→ Allows underspecification: e.g. malloc, external devices, etc.

bind – runs 2nd computation for all results returned by the first:

bind
$$ab \equiv \lambda s.$$
 ($\{(r",s"). \exists (r',s") \in fst (as). (r",s") \in fst (br's")\}, snd $(as) \lor (\exists (r',s") \in fst (as). snd (br's"))$)$

All non-failing computations so far are **deterministic**:

- \rightarrow e.g. return $x \equiv \lambda$ s. ({(x,s)},False)
- → Others are similar.

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \text{ set } \times \text{ bool})$

Nondeterminism: computations return a set of possible results.

→ Allows underspecification: e.g. malloc, external devices, etc.

bind – runs 2nd computation for all results returned by the first:

bind
$$ab \equiv \lambda s.$$
 ($\{(r",s"). \exists (r',s") \in fst (as). (r",s") \in fst (br's")\}, snd $(as) \lor (\exists (r',s") \in fst (as). snd (br's"))$)$

All non-failing computations so far are **deterministic**:

- \rightarrow e.g. return $x \equiv \lambda$ s. ({(x,s)},False)
- → Others are similar.

select - nondeterministic selection from a set:

select
$$A \equiv \lambda s$$
. $((A \times \{s\}), False)$

DEMO

Monadic while loop, defined inductively.

Monadic while loop, defined **inductively**.

whileLoop :: ('
$$a \Rightarrow s \Rightarrow bool$$
) \Rightarrow
(' $a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool$)) \Rightarrow
(' $a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool$))

Monadic while loop, defined **inductively**.

```
whileLoop :: ('a \Rightarrow s \Rightarrow bool) \Rightarrow

('a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool)) \Rightarrow

('a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool))
```

whileLoop CB

- → condition C: takes loop parameter and state as arguments, returns bool
- → monadic body B: takes loop parameter as argument, return-value is the updated loop parameter
- → fails if the loop body ever fails or if the loop never terminates

Monadic while loop, defined **inductively**.

whileLoop :: ('
$$a \Rightarrow s \Rightarrow bool$$
) \Rightarrow
(' $a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool$)) \Rightarrow
(' $a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool$))

whileLoop CB

- → condition C: takes loop parameter and state as arguments, returns bool
- → monadic body B: takes loop parameter as argument, return-value is the updated loop parameter
- → fails if the loop body ever fails or if the loop never terminates

Example: whileLoop (λp s. hp s p = 0) (λp . return (ptrAdd p 1)) p

```
Results: while_results :: (a \Rightarrow s \Rightarrow bool) \Rightarrow
(a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool)) \Rightarrow
((a \times s) \text{ option}) \times ((a \times s) \text{ option}) set
```

Results: while_results ::
$$(a \Rightarrow s \Rightarrow bool) \Rightarrow$$
 $(a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool)) \Rightarrow$
 $((a \Rightarrow s \Rightarrow (a \times s) \text{ set } \times bool)) \Rightarrow$
 $((a \times s) \text{ option}) \times ((a \times s) \text{ option})) \text{ set}$

$$\frac{\neg Crs}{(Some (r,s), Some (r,s)) \in while_results CB} \text{ (terminate)}$$

Results: while_results ::
$$(a \Rightarrow s \Rightarrow bool) \Rightarrow$$
 $(a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool)) \Rightarrow$
 $(((a \times s) \text{ option}) \times ((a \times s) \text{ option})) \times ((a \times s) \text{ option})) \times ((a \times s) \text{ option}))$ set
$$\frac{\neg C r s}{(\text{Some } (r,s), \text{ Some } (r,s)) \in \text{ while_results } C B} \text{ (terminate)}$$

$$\frac{C r s \quad \text{snd } (B r s)}{(\text{Some } (r,s), \, \text{None}) \in \text{while_results } C B} \text{ (fail)}$$

Results: while_results ::
$$(a \Rightarrow s \Rightarrow bool) \Rightarrow$$

$$(a \Rightarrow (s \Rightarrow (a \times s) \text{ set } \times bool)) \Rightarrow$$

$$(((a \times s) \text{ option}) \times ((a \times s) \text{ option})) \text{ set}$$

$$\frac{\neg C r s}{(\text{Some } (r,s), \text{ Some } (r,s)) \in \text{ while_results } C B} \text{ (terminate)}$$

$$\frac{C r s \quad \text{snd } (B r s)}{(\text{Some } (r,s), \text{None}) \in \text{while_results } C B}$$
 (fail)

$$\frac{\textit{Crs} \quad (\textit{r'},\textit{s'}) \in \mathsf{fst} \; (\textit{Brs}) \quad (\mathsf{Some} \; (\textit{r'},\textit{s'}), \; \textit{z}) \in \mathsf{while_results} \; \textit{CB}}{(\mathsf{Some} \; (\textit{r},\textit{s}), \; \textit{z}) \in \mathsf{while_results} \; \textit{CB}} \; \; (\mathsf{loop})$$


```
while_terminates :: (a \Rightarrow s \Rightarrow bool) \Rightarrow

(a \Rightarrow s \Rightarrow bool) \Rightarrow

(a \Rightarrow s \Rightarrow bool) \Rightarrow

a \Rightarrow s \Rightarrow bool
```

while_terminates ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $'a \Rightarrow 's \Rightarrow bool$

$$\frac{\neg Crs}{\text{while_terminates } CBrs} \text{ (terminate)}$$

while_terminates ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $'a \Rightarrow 's \Rightarrow bool$

$$\frac{\neg Crs}{\text{while_terminates } CBrs} \text{ (terminate)}$$

$$\frac{Crs}{\text{while_terminates } CBrs} \Rightarrow CBrs \Rightarrow CBrs$$

$$\frac{Crs}{\text{while_terminates } CBrs} \stackrel{\forall (r,s') \in \text{fst } (Brs). \text{ while_terminates } CBrs}{\text{while_terminates } CBrs} \text{ (loop)}$$

while_terminates ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $`a \Rightarrow 's \Rightarrow bool$

$$\frac{\neg \ C \ r \ s}{\text{while_terminates} \ C \ B \ r \ s} \ \text{(terminate)}$$

$$\frac{C \ r \ s}{\text{while_terminates} \ C \ B \ r \ s} \ \text{(loop)}$$

$$\frac{\text{while_terminates} \ C \ B \ r \ s}{\text{while_terminates} \ C \ B \ r \ s} \ \text{(loop)}$$

$$\frac{(\land r \ s) \ (\ (\ (r',s') \ (\ Some \ (r,s), Some \ (r',s')) \in \text{while_results} \ C \ B \},}{\text{(Some} \ (r,s), None)} \ \in \text{while_results} \ \lor$$

$$\neg \text{while_terminates} \ C \ B \ r \ s))$$

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ Ps \longrightarrow \forall (r,s') \in fst\ (ms).\ Qrs'$$

→ Post-condition *Q* is a predicate of return-value and result state.

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ Ps \longrightarrow \forall (r,s') \in fst\ (ms).\ Qrs'$$

→ Post-condition *Q* is a predicate of return-value and result state.

$$\{\lambda s.\ P\ x\ s\}\ \text{return }x\ \{\lambda r\ s.\ P\ r\ s\}\$$
 $\{P\}$ $\{P\}$ $\{P\}$ $\{P\}$ $\{P\}$ $\{P\}$ $\{P\}$ $\{P\}$ $\{P\}$ $\{P\}$

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ Ps \longrightarrow \forall (r,s') \in fst\ (ms).\ Qrs'$$

→ Post-condition *Q* is a predicate of return-value and result state.

$$\{\lambda s.\ Px\ s\}\ \text{return }x\ \{\lambda rs.\ Prs\}\ \{\lambda s.\ Ps\ s\}\ \text{get}\ \{P\}\ \{\ \}\ \text{put}\ x\ \{P\}$$

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ Ps \longrightarrow \forall (r,s') \in fst\ (ms).\ Qrs'$$

→ Post-condition *Q* is a predicate of return-value and result state.

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ Ps \longrightarrow \forall (r,s') \in fst\ (ms).\ Qrs'$$

→ Post-condition *Q* is a predicate of return-value and result state.

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ Ps \longrightarrow \forall (r,s') \in \mathsf{fst}\ (ms).\ Qrs'$$

→ Post-condition *Q* is a predicate of return-value and result state.

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ Ps \longrightarrow \forall (r,s') \in fst\ (ms).\ Qrs'$$

→ Post-condition *Q* is a predicate of return-value and result state.

$$\{\lambda s.\ P\ x\ s\}\ \text{return }x\ \{\lambda r\ s.\ P\ rs\}$$
 $\{\lambda s.\ P\ s\ s\}\ \text{get}\ \{P\}$ $\{\lambda s.\ P\ ()\ x\}\ \text{put}\ x\ \{P\}$

$$\{\lambda s.\ P\ (f\ s)\ s\}\ \text{gets}\ f\ \{P\}$$
 $\{\lambda s.\ P\ ()\ (f\ s)\}\ \text{modify}\ f\ \{P\}$

$$\{\lambda s.\ P\ \longrightarrow Q\ ()\ s\}\ \text{assert}\ P\ \{Q\}$$

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ Ps \longrightarrow \forall (r,s') \in fst\ (ms).\ Qrs'$$

→ Post-condition *Q* is a predicate of return-value and result state.

$$\{\lambda s.\ P\ x\ s\}\ \text{return }x\ \{\lambda r\ s.\ P\ r\ s\}\ \{\lambda s.\ P\ s\ s\}\ \text{get}\ \{P\}\ \{\lambda s.\ P\ ()\ x\}\ \text{put}\ x\ \{P\}\ \{\lambda s.\ P\ ()\ x\}\ \text{put}\ x\ \{P\}\ \{\lambda s.\ P\ ()\ (f\ s)\}\ \text{modify}\ f\ \{P\}\ \{\lambda s.\ P\ \longrightarrow Q\ ()\ s\}\ \text{assert}\ P\ \{Q\}\ \{\lambda ..\ \text{True}\}\ \text{fail}\ \{Q\}\$$

 $\{ \}$ if P then f else g $\{ S \}$

$$\frac{P \implies \{\!\!\{Q\!\!\}\ f\,\{\!\!\{S\!\!\}\} \quad \neg\ P \implies \{\!\!\{R\!\!\}\ g\,\{\!\!\{S\!\!\}\}}{\{\!\!\{\lambda s.(P \longrightarrow Q\,s) \land (\neg P \longrightarrow R\,s)\!\!\}\ \text{if }P\text{ then }f\text{ else }g\,\{\!\!\{S\!\!\}\}}$$

$$\begin{array}{c} P \Longrightarrow \{ \mid Q \mid \mid f \mid \mid S \mid \mid \neg P \Longrightarrow \{ \mid R \mid \mid g \mid \mid S \mid \} \\ \{ \mid \lambda s.(P \longrightarrow Q \mid s) \land (\neg P \longrightarrow R \mid s) \mid \mid \text{if } P \text{ then } f \text{ else } g \mid \mid S \mid \} \\ \\ \frac{\bigwedge x. \{ \mid B \mid x \mid \mid \mid g \mid x \mid \mid C \mid \mid \mid A \mid \mid \mid f \mid \mid B \mid \}}{\{ \mid A \mid \mid \mid do \mid x \leftarrow f, g \mid x \mid \} \{ \mid C \mid \mid A \mid \mid f \mid \mid B \mid \}} \end{array}$$

$$\begin{array}{c} P \Longrightarrow \{Q\} \ f \, \{S\} \quad \neg \ P \Longrightarrow \{R\} \ g \, \{S\} \\ \hline \{ \lambda s.(P \longrightarrow Q \ s) \ \land \ (\neg P \longrightarrow R \ s) \} \ \ \textbf{if} \ P \ \textbf{then} \ f \ \textbf{else} \ g \, \{S\} \\ \hline \frac{\bigwedge x. \, \{B \ x\} \ g \, x \, \{C\} \quad \{A\} \ f \, \{B\} \}}{\{A\} \ \textbf{do} \{ \ x \leftarrow f, \ g \, x \} \, \{C\} } \\ \hline \frac{\{B\} \ m \, \{Q\} \quad \land s. \ P \, s \Longrightarrow R \, s}{\{P\} \ m \, \{Q\} } \end{array}$$

$$\begin{array}{c} P \Longrightarrow \{Q\} \ f \{S\} \ \neg P \Longrightarrow \{R\} \ g \{S\} \\ \hline \{\lambda s.(P \longrightarrow Q s) \land (\neg P \longrightarrow R s)\} \ \ \textbf{if} \ P \ \textbf{then} \ f \ \textbf{else} \ g \{S\} \\ \hline \\ \underbrace{\bigwedge x. \{B x\} \ g x \{C\} \ \{A\} \ f \{B\} \}}_{\{A\} \ \textbf{do} \{\ x \leftarrow f; \ g x \} \{C\} } \\ \hline \\ \underbrace{\{R\} \ m \{Q\} \ \bigwedge s. \ P s \Longrightarrow R s}_{\{P\} \ m \{Q\}} \end{array}$$

$$\frac{ \bigwedge r. \ \{ \lambda s. \ Irs \land \ Crs \} \ B \ \{ I \} \quad \bigwedge rs. \ \llbracket Irs; \neg Crs \rrbracket \implies Qrs}{ \{ Ir \} \text{ whileLoop } CBr \ \{ Q \} }$$

DEMO

We have seen today

- → Deep and shallow embeddings
- → Isabelle records
- → Nondeterministic State Monad with Failure
- → Monadic Weakest Precondition Rules