COMP4161
Advanced Topics in Software
Verification

>>=

Thomas Sewell, Miki Tanaka, Rob Sison
T3/2024

Content

=» Foundations & Principles
e |ntro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

e |nductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
[2,39]
(3.4]

(4.5]
[5.7]
[7]
(8]
(8.9]
[9,10]
[10°]

431 due; Pa2 due; °a3 due

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Deep Embeddings

We used a datatype com to represent the syntax of IMP.
=> We then defined semantics over this datatype.

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Deep Embeddings

We used a datatype com to represent the syntax of IMP.
=> We then defined semantics over this datatype.

This is called a deep embedding:

=» separate representation of language terms and their semantics.

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Deep Embeddings

We used a datatype com to represent the syntax of IMP.
=> We then defined semantics over this datatype.

This is called a deep embedding:
=» separate representation of language terms and their semantics.

Advantages:
=» Prove general theorems about the language, not just of programs.
=» e.g. expressiveness, correct compilation, inference completeness ...
=» usually by induction over the syntax or semantics.

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Deep Embeddings

We used a datatype com to represent the syntax of IMP.
=> We then defined semantics over this datatype.

This is called a deep embedding:
=» separate representation of language terms and their semantics.

Advantages:
=» Prove general theorems about the language, not just of programs.
=» e.g. expressiveness, correct compilation, inference completeness ...
=» usually by induction over the syntax or semantics.

Disadvantages:

=» Semantically equivalent programs are not obviously equal.
- e.g. “IF True THEN SKIP ELSE SKIP = SKIP” is not a true theorem.
=» Many concepts already present in the logic must be reinvented.

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the
logic.

=» A definition for each language construct, giving its semantics.

=> Programs are represented as instances of these definitions.

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the
logic.

=» A definition for each language construct, giving its semantics.

=> Programs are represented as instances of these definitions.
Example: program semantics as functions state = state

SKIP =

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the
logic.

=» A definition for each language construct, giving its semantics.

=> Programs are represented as instances of these definitions.
Example: program semantics as functions state = state

SKIP= J\s.s

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the
logic.

=» A definition for each language construct, giving its semantics.

=> Programs are represented as instances of these definitions.
Example: program semantics as functions state = state

SKIP= Js.s
IFb THEN c ELSEd =

4| COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the
logic.

=» A definition for each language construct, giving its semantics.

=> Programs are represented as instances of these definitions.
Example: program semantics as functions state = state

SKIP=)s.s
IFOTHENCELSEd= JMs.ifbsthencselseds

4| COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the
logic.

=» A definition for each language construct, giving its semantics.

=> Programs are represented as instances of these definitions.
Example: program semantics as functions state = state

SKIP=)s.s
IFOTHENCELSEd= JMs.ifbsthencselseds

=» “IF True THEN SKIP ELSE SKIP = SKIP” is now a true statement.
=» can use the simplifier to do semantics-preserving program rewriting.

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the
logic.

=» A definition for each language construct, giving its semantics.

=> Programs are represented as instances of these definitions.
Example: program semantics as functions state = state

SKIP=)s.s
IFOTHENCELSEd= JMs.ifbsthencselseds

=» “IF True THEN SKIP ELSE SKIP = SKIP” is now a true statement.
=» can use the simplifier to do semantics-preserving program rewriting.

Today: a shallow embedding for (interesting parts of) C semantics

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Records in Isabelle

Records are n-tuples with named components

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Records in Isabelle

Records are n-tuples with named components

Example:
record A= a:nat
b ::int

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Records in Isabelle

Records are n-tuples with named components

Example:
record A= a:nat
b ::int
-» Selectors: a:A=nat, b:A=int, ar=SucO

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Records in Isabelle

Records are n-tuples with named components

Example:
record A= a: nat
b:int
-» Selectors: a:A=nat, b:A=int, ar=SucO
- Constructors: (a=Suc0, b=-1)

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Records in Isabelle

Records are n-tuples with named components

Example:
record A= a:: nat
b:int
-» Selectors: a:A=nat, b:A=int, ar=SucO
- Constructors: (a=Suc0, b=-1)
=» Update: r(a:=SucO]), b.update (Ab.b+1)r

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Records in Isabelle

Records are n-tuples with named components

Example:
record A= a:: nat
b:int
-» Selectors: a::A=nat, b:A=int, ar=SucO
- Constructors: (a=Suc0, b=-1)
=» Update: r(a:=SucO]), b.update (Ab.b+1)r

Records are extensible:

record B=A +
c :: nat list

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Records in Isabelle

Records are n-tuples with named components

Example:
record A= a:: nat
b:int
-» Selectors: a::A=nat, b:A=int, ar=SucO
- Constructors: (a=Suc0, b=-1)
=» Update: r(a:=SucO]), b.update (Ab.b+1)r

Records are extensible:

record B=A +
c :: nat list

(a=Suc0, b=-1,¢c=10,0])

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

-» Access to volatile variables, external APIs: Nondeterminism
=» Undefined behaviour: Failure
=» Early exit (return, break, continue): Exceptional control flow

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

-» Access to volatile variables, external APIs: Nondeterminism
=» Undefined behaviour: Failure
=» Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

-» Access to volatile variables, external APIs: Nondeterminism
=» Undefined behaviour: Failure
=» Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 microkernel verification work.

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:
-» Access to volatile variables, external APIs: Nondeterminism

=» Undefined behaviour: Failure

=» Early exit (return, break, continue): Exceptional control flow
Relatively straightforward Hoare logic
Used extensively in the seL4 microkernel verification work.

AutoCorres: verified translation from deeply embedded C to
monadic representation

=» Specifically designed for humans to do proofs over.

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function

5= (ax’)

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function
5= (‘ax’s)

The computation operates over a state of type s:
=» Includes all global variables, external devices, etc.

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function
5= (‘ax’s)
The computation operates over a state of type s:
=» Includes all global variables, external devices, etc.

The computation also yields a return value of type ‘a:
=» models e.g. exit status and return values

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function
5= (‘ax’s)
The computation operates over a state of type s:
=» Includes all global variables, external devices, etc.

The computation also yields a return value of type ‘a:
=» models e.g. exit status and return values

return — the computation that leaves the state unchanged and
returns its argument:

return x = As.

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function
5= (‘ax’s)
The computation operates over a state of type s:
=» Includes all global variables, external devices, etc.

The computation also yields a return value of type ‘a:
=» models e.g. exit status and return values

return — the computation that leaves the state unchanged and
returns its argument:

return x = As. (x,9)

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

State Monad: Basic Operations

get — returns the entire state without modifying it:
get = As.

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Basic Operations

get — returns the entire state without modifying it:
get = As. (s,9)

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Basic Operations

get — returns the entire state without modifying it:
get = As. (s,9)

put — replaces the state and returns the unit value ():
put s =

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Basic Operations

get — returns the entire state without modifying it:
get = As. (s,9)

put — replaces the state and returns the unit value ():
puts= M. ((),s)

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Basic Operations
get — returns the entire state without modifying it:
get = As. (s,9)

put — replaces the state and returns the unit value ():
puts= M. ((),s)

bind — sequences two computations; 2nd takes the first’s result:
c>=d =

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Basic Operations
get — returns the entire state without modifying it:
get = As. (s,9)

put — replaces the state and returns the unit value ():
puts= M. ((),s)

bind — sequences two computations; 2nd takes the first’s result:
c>=d = Xs.let(r,s)=csindrs’

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Basic Operations
get — returns the entire state without modifying it:
get = As. (s,9)

put — replaces the state and returns the unit value ():
puts= M. ((),s)

bind — sequences two computations; 2nd takes the first’s result:

c>=d = Xs.let(r,s)=csindrs’

gets — returns a projection of the state; leaves state unchanged:

gets f =

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Basic Operations
get — returns the entire state without modifying it:
get = As. (s,9)

put — replaces the state and returns the unit value ():
puts= M. ((),s)

bind — sequences two computations; 2nd takes the first’s result:

c>=d = Xs.let(r,s)=csindrs’

gets — returns a projection of the state; leaves state unchanged:

gets f = get >>= (\s. return (f s))

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Basic Operations
get — returns the entire state without modifying it:
get = As. (s,9)

put — replaces the state and returns the unit value ():
puts= M. ((),s)

bind — sequences two computations; 2nd takes the first’s result:

c>=d = Xs.let(r,s)=csindrs’

gets — returns a projection of the state; leaves state unchanged:

gets f = get >>= (\s. return (f s))

modify — applies its argument to modify the state; returns ():
modify f = get >>= (As. put (fs))

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Monads, Laws

Formally: a monad M is a type constructor with two operations.

return :: o = Ma bind:Ma=(a=Mg)=Mg

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = Ma bind:Ma=(a=Mg)=Mg

Infix Notation: a >>= b is infix notation for bind a b

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = Ma bind:Ma=(a=Mg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (A\x. b x) is often written as do { x« a; b x }

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = Ma bind:Ma=(a=Mg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (A\x. b x) is often written as do { x« a; b x }

Monad Laws:

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = Ma bind:Ma=(a=Mg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (A\x. b x) is often written as do { x« a; b x }

Monad Laws:

return-left: (retum x>=1) = fx

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = Ma bind:Ma=(a=Mg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (A\x. b x) is often written as do { x« a; b x }

Monad Laws:
return-left: (retum x>=1) = fx
return-right: (m>>=return) = m

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
Sl

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = Ma bind:Ma=(a=Mg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (A\x. b x) is often written as do { x« a; b x }

Monad Laws:
return-left: (retum x>=1) = fx
return-right: (m>>=return) = m

bind-assoc: ((a>>=b) >=1¢) (a >= (Ax. bx>>=2¢))

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
Sl

State Monad: Example

A fragment of C:

void f(int *p) {
int x = xp;
if (x < 10) {
*p = x+1;
}
}

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad: Example

record state =
hp :: int ptr = int

A fragment of C: f:: “int ptr = (state = (unit,state))”
void f(int *p) { ip =

int x = *p; do {

if (x < 10) { X < gets (As. hp s p);

*p = X+l if x < 10 then

} modify (hp_update (Ah. (h(p = x + 1))))

} else
return ()
}

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad with Failure

Computations can fail: s = (('a x ’s) x bool)

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad with Failure

Computations can fail: s = (('a x ’s) x bool)

bind — fails when either computation fails
bindab=let ((r,s),)=as; ((r,s),f)=brs’in((r,s"), fvrF)

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad with Failure

Computations can fail: s = (('a x ’s) x bool)

bind — fails when either computation fails
bindab=let ((r,s),)=as; ((r,s),f)=brs’in((r,s"), fvrF)

fail — the computation that always fails:
fail = As. (undefined, True)

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad with Failure

Computations can fail: s = (('a x ’s) x bool)

bind — fails when either computation fails
bindab=let ((r,s),)=as; ((r,s),f)=brs’in((r,s"), fvrF)

fail — the computation that always fails:
fail = As. (undefined, True)

assert — fails when given condition is False:
assert P = if P then return () else fail

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

State Monad with Failure

Computations can fail: s = (('a x ’s) x bool)

bind — fails when either computation fails
bindab=let ((r,s),)=as; ((r,s),f)=brs’in((r,s"), fvrF)

fail — the computation that always fails:
fail = As. (undefined, True)

assert — fails when given condition is False:
assert P = if P then return () else fail

guard - fails when given condition applied to the state is False:
guard P = get >>= (X\s. assert (P s))

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Guards

Used to assert the absence of undefined behaviour in C

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Guards

Used to assert the absence of undefined behaviour in C

=» pointer validity, absence of divide by zero, signed overflow, etc.

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Guards

Used to assert the absence of undefined behaviour in C

=» pointer validity, absence of divide by zero, signed overflow, etc.

fp =
do {
y <—guard (As. valid s p);
X < gets (As. hp s p);
if x < 10 then
modify (hp_update (Ah. (h(p := x + 1))))
else
return ()

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nondeterministic State Monad with Failure

Computations can be nondeterministic: s = ((‘a x 's) set x bool)

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nondeterministic State Monad with Failure

Computations can be nondeterministic: s = ((‘a x 's) set x bool)

Nondeterminism: computations return a set of possible results.
=» Allows underspecification: e.g. malloc, external devices, etc.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nondeterministic State Monad with Failure

Computations can be nondeterministic: s = ((‘a x 's) set x bool)

Nondeterminism: computations return a set of possible results.
=» Allows underspecification: e.g. malloc, external devices, etc.

bind — runs 2nd computation for all results returned by the first:

bindab= Js. ({(r,s"). 3(r,s) efst(as). (r,s) efst(brs)},
snd(as) Vv (3(r,s) efst(as). snd (br's)))

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nondeterministic State Monad with Failure

Computations can be nondeterministic: s = ((‘a x 's) set x bool)
Nondeterminism: computations return a set of possible results.
=» Allows underspecification: e.g. malloc, external devices, etc.
bind — runs 2nd computation for all results returned by the first:
bindab= Js. ({(r,s"). 3(r,s) efst(as). (r,s) efst(brs)},
snd (as) Vv (3(r, s) efst(as). snd (br’'s)))

All non-failing computations so far are deterministic:

= e.g. return x = As. ({(x,5)},False)
=» Others are similar.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Nondeterministic State Monad with Failure

Computations can be nondeterministic: s = ((‘a x 's) set x bool)

Nondeterminism: computations return a set of possible results.
=» Allows underspecification: e.g. malloc, external devices, etc.
bind — runs 2nd computation for all results returned by the first:
bindab= Js. ({(r,s"). 3(r,s) efst(as). (r,s) efst(brs)},
snd (as) Vv (3(r, s) efst(as). snd (br’'s)))

All non-failing computations so far are deterministic:

= e.g. return x = As. ({(x,5)},False)
=» Others are similar.

select — nondeterministic selection from a set:
select A= Xs. ((A x{s}),False)

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

DEMO

While Loops

Monadic while loop, defined inductively.

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

While Loops

Monadic while loop, defined inductively.

whileLoop :: (‘a = s = bool) =
(‘a = (s = (‘a x ’s) set x bool)) =
(a = (s = ("a x ’s) set x bool))

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

While Loops

Monadic while loop, defined inductively.

s = bool) =
(s = (‘a x s) set x bool)) =
(s = (‘a x 's) set x bool))

whileLoop :: ('a =
(a =
(a =
whileLoop C B
-» condition C: takes loop parameter and state as arguments, returns
bool
=»> monadic body B: takes loop parameter as argument, return-value is
the updated loop parameter
=» fails if the loop body ever fails or if the loop never terminates

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

While Loops

Monadic while loop, defined inductively.

whileLoop :: ('a = s = bool) =
(‘a = (s = (‘a x ’s) set x bool)) =
(a = (s = ("a x ’s) set x bool))

whileLoop C B
-» condition C: takes loop parameter and state as arguments, returns
bool
=»> monadic body B: takes loop parameter as argument, return-value is
the updated loop parameter
=» fails if the loop body ever fails or if the loop never terminates

Example: whileLoop (Ap s. hp s p=0) (Ap. return (ptrAdd p 1)) p

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
Sl

Defining While Loops Inductively

Two-part definition: results and termination

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Defining While Loops Inductively

Two-part definition: results and termination

Results: while_results :: ('a = s = bool) =
(‘a = (s = (‘ax ’s) set x bool)) =
((('a x ’s) option) x ((‘a x s) option)) set

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Defining While Loops Inductively

Two-part definition: results and termination
Results: while_results :: ('a = s = bool) =
(‘a = (s = (‘ax ’s) set x bool)) =
((('a x ’s) option) x ((‘a x s) option)) set

-Crs
(Some (r,s), Some (r,s)) € while_results C B

(terminate)

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Defining While Loops Inductively

Two-part definition: results and termination
Results: while_results :: ('a = s = bool) =
(‘a = (s = (‘ax ’s) set x bool)) =
((('a x ’s) option) x ((‘a x s) option)) set

-Crs
(Some (r,s), Some (r,s)) € while_results C B

(terminate)

Crs snd(Brs)
(Some (r,s), None) € while_results C B

(fail)

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Defining While Loops Inductively

Two-part definition: results and termination
Results: while_results :: ('a = s = bool) =
(‘a = (s = (‘ax ’s) set x bool)) =
((('a x ’s) option) x ((‘a x s) option)) set

-Crs
(Some (r,s), Some (r,s)) € while_results C B

(terminate)

Crs snd(Brs)
(Some (r,s), None) € while_results C B

(fail)

Crs (r,s)efst(Brs) (Some (r,s), z) € while_results C B
(Some (r,s), z) € while_results C B

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

(loop

)

Defining While Loops Inductively

Termination:

while_terminates :: ('a = s = bool) =
('a = (s = (‘a x ’s) set x bool)) =
‘a = s = bool

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Defining While Loops Inductively

Termination:
while_terminates :: ('a = s = bool) =
('a = (s = (‘a x ’s) set x bool)) =
‘a = s = bool

-Crs
while_terminates CBrs

(terminate)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Defining While Loops Inductively

Termination:
while_terminates :: ('a = s = bool) =
('a = (s = (‘a x ’s) set x bool)) =
‘a = s = bool

-Crs
while_terminates CBrs

(terminate)

Crs V(r,s) e fst(Brs). while_terminates CBr's’
while_terminates CBrs

(loop)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Defining While Loops Inductively

Termination:
while_terminates :: ('a = s = bool) =
('a = (s = (‘a x ’s) set x bool)) =
‘a = s = bool

-Crs
while_terminates CBrs

(terminate)

Crs V(r,s) e fst(Brs). while_terminates CBr's’
while_terminates CBrs

(loop)

whileLoop C B =
(Ars. ({(r,s). (Some (r, s), Some (r, s)) € while_results C B},
(Some (r, s), None) € while_results v
—while_terminates C Br s))

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Hoare Logic over Nondeterministic State Monads
Partial correctness:

{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Qs a predicate of return-value and result state.

Weakest Precondition Rules

{ }return x {Ars. Prs} { Foet{P} { } put x {P}

{ I gets f {P} { } modify f{ P}

{ I} assert P {Q}} { } fail {Q}

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Hoare Logic over Nondeterministic State Monads
Partial correctness:

{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Qs a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. Px s} return x {Ars. Prs} { Foet{P} { } put x {P}

{ I gets f {P} { } modify f{ P}

{ I} assert P {Q}} { } fail {Q}

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Hoare Logic over Nondeterministic State Monads
Partial correctness:

{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Qs a predicate of return-value and result state.

Weakest Precondition Rules

{rs. Px s} return x {Ars. Prs} {\s. Pss}get{P} { } put x {P}

{ I gets f {P} { } modify f{ P}

{ I} assert P {Q}} { } fail {Q}

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Hoare Logic over Nondeterministic State Monads
Partial correctness:

{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Qs a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. Px s} return x {Ars. Prs}} {\s. Pss}get{P} {As. P () x} putx{P}

{ I gets f {P} { } modify f{ P}

{ I} assert P {Q}} { } fail {Q}

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Hoare Logic over Nondeterministic State Monads
Partial correctness:

{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Qs a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. Px s} return x {Ars. Prs}} {\s. Pss}get{P} {As. P () x} putx{P}
{Xs. P (fs) s} gets f { P} { } modify f{ P}

{ I} assert P {Q}} { } fail {Q}

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Hoare Logic over Nondeterministic State Monads
Partial correctness:

{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Qs a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. Px s} return x {Ars. Prs}} {\s. Pss}get{P} {As. P () x} putx{P}

{rs. P(fs)shgetsf{P} {Xs. P () (fs)} modify f{P}

{ I} assert P {Q}} { } fail {Q}

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Hoare Logic over Nondeterministic State Monads
Partial correctness:

{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Qs a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. Px s} return x {Ars. Prs}} {\s. Pss}get{P} {As. P () x} putx{P}
{Xs. P (fs)s}p getsf{P} {As. P () (fs)} modify f{P}

{As. P—Q () s} assert P{Q} { } fail {Q}

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Hoare Logic over Nondeterministic State Monads
Partial correctness:

{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Qs a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. Px s} return x {Ars. Prs}} {\s. Pss}get{P} {As. P () x} putx{P}
{Xs. P (fs)s}p getsf{P} {As. P () (fs)} modify f{P}

{xs. P—Q() s} assert P{Q} {A-. True}} fail {Q}

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More Hoare Logic Rules

{ } if Pthen felse g {S}

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More Hoare Logic Rules

P = {Q} f{S} - P = {R}g{S}
{rs.(P — Qs) A (-P — Rs)| if Pthen felse g {S|

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More Hoare Logic Rules

P = {Q} f{S} - P = {R}g{S}

{rs.(P — Qs) A (-P — Rs)| if Pthen felse g {S|

AxA{Bxt gx{C} {A} f{B}
{A}do{ x « f, gx}{C}

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More Hoare Logic Rules

P = {Q} f{S} - P = {R}g{S}

{rs.(P — Qs) A (-P — Rs)| if Pthen felse g {S|

Ax{Bx} gx{C} {A} f{B}
{A}do{ x « f, gx}{C}

{R m{Q} As.Ps = Rs
1Py m{Qt

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More Hoare Logic Rules

P = {Q} f{S} - P = {R}g{S}
{rs.(P — Qs) A (-P — Rs)| if Pthen felse g {S|

Ax{Bx} gx{C} {A} f{B}
{A}do{ x « f, gx}{C}

{R m{Q} As.Ps = Rs
1Py m{Qt

Ar{xs.lrs A CrsyB{l} Ars.[lrs; -Crs] = Qrs
{/ r} whileLoop C B r {Q}

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

We have seen today

=>» Deep and shallow embeddings

-» Isabelle records

-» Nondeterministic State Monad with Failure
=» Monadic Weakest Precondition Rules

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

