
COMP4161
Advanced Topics in Software

Verification

{P} . . .{Q}

Thomas Sewell, Miki Tanaka, Rob Sison

T3/2024

Last Time

➜ Syntax of a simple imperative language
➜ Operational semantics
➜ Program proof on operational semantics
➜ Hoare logic rules
➜ Soundness of Hoare logic

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Content

➜ Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

➜ Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c]

aa1 due; ba2 due; ca3 due

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation?

Last time: Hoare rule application is nicer than using operational
semantics.

BUT:
➜ it’s still kind of tedious
➜ it seems boring & mechanical

Automation?

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:
➜ annotate program with invariants
➜ then, Hoare rules can be applied automatically

Example:

{M = 0 ∧ N = 0}
WHILE M ̸= a INV {N = M ∗ b} DO

N := N + b
M := M + 1

OD
{N = a ∗ b}

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q = λσ. Q (σ(x := a σ))
pre (c1; c2) Q = pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q = λσ. (b σ −→ pre c1 Q σ) ∧

(¬ bσ −→ pre c2 Q σ)
pre (WHILE b INV I DO c OD) Q = I

6 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. I σ ∧ b σ −→ pre c I σ)∧

(∀σ. I σ ∧ ¬b σ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Syntax Tricks

➜ x := λσ. 1 instead of x := 1 is ugly
➜ {λσ. σ x = n} instead of {x = n} is ugly too

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:
➜ declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

➜ separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

Arrays

Depending on language, model arrays as functions:
➜ Array access = function application:

a[i] = a i
➜ Array update = function update:

a[i] :== v = a :== a(i:= v)

Use lists to express length:
➜ Array access = nth:

a[i] = a ! i
➜ Array update = list update:

a[i] :== v = a :== a[i:= v]
➜ Array length = list length:

a.length = length a

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Pointers

Choice 1

datatype ref = Ref int | Null
types heap = int ⇒ val
datatype val = Int int | Bool bool | Struct x int int bool | . . .

➜ hp :: heap, p :: ref
➜ Pointer access: *p = the Int (hp (the addr p))
➜ Pointer update: *p :== v = hp :== hp ((the addr p) := v)

➜ a bit klunky
➜ gets even worse with structs
➜ lots of value extraction (the Int) in spec and program

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Pointers

Choice 2 (Burstall ’72, Bornat ’00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next hp = int ⇒ ref
types elem hp = int ⇒ int

➜ next :: next hp, elem :: elem hp, p :: ref
➜ Pointer access: p→next = next (the addr p)
➜ Pointer update: p→next :== v = next :== next ((the addr p) := v)

In general:
➜ a separate heap for each struct field
➜ buys you p→next ̸= p→elem automatically (aliasing)
➜ still assumes type safe language

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

We have seen today ...

➜ Weakest precondition
➜ Verification conditions
➜ Example program proofs
➜ Arrays, pointers

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

