COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

→ Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
C verification	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

A CRASH COURSE IN SEMANTICS

(FOR MORE,

SEE CONCRETE SEMANTICS)

IMP - a small Imperative Language

Commands: datatype com

```
= SKIP
| Assign vname aexp (_ := _)
| Semi com com (_; _)
| Cond bexp com com (IF _ THEN _ ELSE _)
| While bexp com (WHILE _ DO _ OD)
```

IMP - a small Imperative Language

```
Commands:
datatype com
```

```
    SKIP
    Assign vname aexp
    Semi com com
    Cond bexp com com
    While bexp com
    (WHILE _ DO _ OD)
```

```
type_synonym vname = string
type_synonym state = vname ⇒ nat
```


IMP - a small Imperative Language

```
Commands:
datatype com

= SKIP
| Assign vname aexp (_ := _)
Semi com com (_; _)
Cond bexp com com
While bexp com (WHILE _ DO _ OD)
```

type_synonym vname = string **type_synonym** state = vname ⇒ nat

type_synonym aexp = state \Rightarrow nat **type_synonym** bexp = state \Rightarrow bool

Example Program

Usual syntax:

$$\begin{array}{l} B := 1; \\ \text{WHILE } A \neq 0 \text{ DO} \\ B := B*A; \\ A := A-1 \\ \text{OD} \end{array}$$

Example Program

Usual syntax:

$$\begin{array}{l} B := 1; \\ \text{WHILE } A \neq 0 \text{ DO} \\ B := B*A; \\ A := A-1 \\ \text{OD} \end{array}$$

Expressions are functions from state to bool or nat:

$$\begin{array}{l} B := (\lambda \sigma. \ 1); \\ \text{WHILE} \ (\lambda \sigma. \ \sigma \ A \neq 0) \ \text{DO} \\ B := (\lambda \sigma. \ \sigma \ B * \sigma \ A); \\ A := (\lambda \sigma. \ \sigma \ A - 1) \\ \text{OD} \end{array}$$

So far we have defined:

So far we have defined:

→ Syntax of commands and expressions

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need:

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

→ A wide field of its own

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

- → A wide field of its own
- → Some choices:
 - Operational (inductive relations, big step, small step)
 - Denotational (map program syntax to e.g. state transformers)
 - Axiomatic (e.g. Hoare logic later this lecture)

$$\overline{\langle \mathsf{SKIP}, \sigma \rangle \to \sigma}$$

$$\overline{\langle \mathsf{SKIP}, \sigma \rangle \to \sigma}$$

$$\overline{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \to}$$

$$\begin{aligned} \langle \mathsf{SKIP}, \sigma \rangle &\to \sigma \\ \\ \frac{\mathsf{e} \ \sigma = \mathsf{v}}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle &\to \sigma [\mathsf{x} \mapsto \mathsf{v}]} \end{aligned}$$

$$\overline{\langle \mathsf{SKIP}, \sigma \rangle \to \sigma}$$

$$\underline{\mathsf{e} \ \sigma = \mathsf{v}}$$

$$\overline{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \to \sigma[\mathsf{x} \mapsto \mathsf{v}]}$$

$$\overline{\langle \mathsf{c}_1; \mathsf{c}_2, \sigma \rangle \to \sigma''}$$

$$\begin{split} & \overline{\langle \mathsf{SKIP}, \sigma \rangle \to \sigma} \\ & \frac{e \ \sigma = \textit{v}}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \to \sigma[\textit{x} \mapsto \textit{v}]} \\ & \frac{\langle \textit{c}_1, \sigma \rangle \to \sigma' \quad \langle \textit{c}_2, \sigma' \rangle \to \sigma''}{\langle \textit{c}_1; \textit{c}_2, \sigma \rangle \to \sigma''} \end{split}$$

 $\overline{\langle \mathsf{WHILE}\; b\; \mathsf{DO}\; c\; \mathsf{OD}, \sigma
angle o}$

$$\frac{\textit{b} \; \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \; \textit{b} \; \mathsf{DO} \; \textit{c} \; \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{\textit{b} \; \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \; \textit{b} \; \mathsf{DO} \; \textit{c} \; \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{\textit{b}\ \sigma = \mathsf{True}}{\langle \mathsf{WHILE}\ \textit{b}\ \mathsf{DO}\ \textit{c}\ \mathsf{OD}, \sigma \rangle \to}$$

$$\frac{b \ \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{\textit{b}\ \sigma = \mathsf{True}\quad \langle \textit{c}, \sigma \rangle \to \sigma'}{\langle \mathsf{WHILE}\ \textit{b}\ \mathsf{DO}\ \textit{c}\ \mathsf{OD}, \sigma \rangle \to}$$

$$\frac{\textit{b} \ \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \ \textit{b} \ \mathsf{DO} \ \textit{c} \ \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{\textit{b} \ \sigma = \mathsf{True} \quad \langle \textit{c}, \sigma \rangle \rightarrow \sigma' \quad \langle \mathsf{WHILE} \ \textit{b} \ \mathsf{DO} \ \textit{c} \ \mathsf{OD}, \sigma' \rangle \rightarrow \sigma''}{\langle \mathsf{WHILE} \ \textit{b} \ \mathsf{DO} \ \textit{c} \ \mathsf{OD}, \sigma \rangle \rightarrow \sigma''}$$

DEMO: SYNTAX AND SEMANTICS

Proofs about Programs

Now we know:

→ What programs are: Syntax

→ On what they work: State

→ How they work: Semantics

Proofs about Programs

Now we know:

→ What programs are: Syntax

→ On what they work: State

→ How they work: Semantics

So we can prove properties about programs

Proofs about Programs

Now we know:

- → What programs are: Syntax
- → On what they work: State
- → How they work: Semantics

So we can prove properties about programs

Example:

Show that example program from slide 6 implements the factorial.

lemma
$$\langle \text{factorial}, \sigma \rangle \to \sigma' \Longrightarrow \sigma' B = \text{fac } (\sigma A)$$
 (where fac $0 = 1$, fac (Suc n) = (Suc n) * fac n)

DEMO: PROOF ABOUT SEMANTICS

Too tedious

Induction needed for each loop

Too tedious

Induction needed for each loop

Is there something easier?

Idea: describe meaning of program by pre/post conditions

Idea: describe meaning of program by pre/post conditions

$$\{\text{True}\}\quad x := 2 \quad \{x = 2\}$$

Idea: describe meaning of program by pre/post conditions

Idea: describe meaning of program by pre/post conditions

{True}
$$x := 2 \quad \{x = 2\}$$

{ $y = 2$ } $x := 21 * y \quad \{x = 42\}$
{ $x = n$ } IF $y < 0$ THEN $x := x + y$ ELSE $x := x - y \quad \{x = n - |y|\}$

Idea: describe meaning of program by pre/post conditions

{True}
$$x := 2$$
 { $x = 2$ }
{ $y = 2$ } $x := 21 * y$ { $x = 42$ }
{ $x = n$ } IF $y < 0$ THEN $x := x + y$ ELSE $x := x - y$ { $x = n - |y|$ }
{ $A = n$ } factorial { $B = \text{fac } n$ }

Idea: describe meaning of program by pre/post conditions

Examples:

{True}
$$x := 2 \quad \{x = 2\}$$

 $\{y = 2\}$ $x := 21 * y \quad \{x = 42\}$
 $\{x = n\}$ IF $y < 0$ THEN $x := x + y$ ELSE $x := x - y \quad \{x = n - |y|\}$
 $\{A = n\}$ factorial $\{B = \text{fac } n\}$

Proofs: have rules that directly work on such triples

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

→ Here: again functions from state to bool (shallow embedding of assertions)

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ \textit{\textbf{c}} \ \{\textit{\textbf{Q}}\} \quad \equiv \quad \forall \sigma \ \sigma'. \ \textit{\textbf{P}} \ \sigma \land \langle \textit{\textbf{c}}, \sigma \rangle \rightarrow \sigma' \longrightarrow \textit{\textbf{Q}} \ \sigma'$$

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ \mathbf{c} \ \{Q\} \quad \equiv \quad \forall \sigma \ \sigma'. \ P \ \sigma \land \langle \mathbf{c}, \sigma \rangle \rightarrow \sigma' \longrightarrow Q \ \sigma'$$

Total Correctness:

$$\models \{P\} \ C \ \{Q\} \qquad \equiv \qquad (\forall \sigma \ \sigma'. \ P \ \sigma \land \langle \mathbf{c}, \sigma \rangle \to \sigma' \longrightarrow Q \ \sigma') \land (\forall \sigma. \ P \ \sigma \longrightarrow \exists \sigma'. \ \langle \mathbf{c}, \sigma \rangle \to \sigma')$$

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad \forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \rightarrow \sigma' \longrightarrow Q \ \sigma'$$

Total Correctness:

$$\models \{P\} \ \mathbf{c} \ \{Q\} \quad \equiv \quad (\forall \sigma \ \sigma'. \ P \ \sigma \land \langle \mathbf{c}, \sigma \rangle \to \sigma' \longrightarrow Q \ \sigma') \land (\forall \sigma. \ P \ \sigma \longrightarrow \exists \sigma'. \ \langle \mathbf{c}, \sigma \rangle \to \sigma')$$

This lecture: partial correctness only (easier)

 $\overline{\{P\}}$ SKIP $\{P\}$

$$\overline{\{P\} \quad \mathsf{SKIP} \quad \{P\}} \qquad \overline{\{P[x \mapsto e]\} \quad x := e \quad \{P\}}$$

Are the Rules Correct?

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Are the Rules Correct?

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Proof: by rule induction on $\vdash \{P\}$ c $\{Q\}$

Are the Rules Correct?

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Proof: by rule induction on $\vdash \{P\} \ c \ \{Q\}$

Demo: Hoare Logic in Isabelle

