
COMP4161
Advanced Topics in Software

Verification

{P} . . .{Q}

Thomas Sewell, Miki Tanaka, Rob Sison

T3/2024



Content

➜ Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

➜ Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b ]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c ]

aa1 due; ba2 due; ca3 due

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



A CRASH COURSE IN SEMANTICS



(FOR MORE,
SEE CONCRETE SEMANTICS)



IMP - a small Imperative Language

Commands:
datatype com = SKIP

| Assign vname aexp ( := )
| Semi com com ( ; )
| Cond bexp com com (IF THEN ELSE )
| While bexp com (WHILE DO OD)

type synonym vname = string
type synonym state = vname ⇒ nat

type synonym aexp = state ⇒ nat
type synonym bexp = state ⇒ bool

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



IMP - a small Imperative Language

Commands:
datatype com = SKIP

| Assign vname aexp ( := )
| Semi com com ( ; )
| Cond bexp com com (IF THEN ELSE )
| While bexp com (WHILE DO OD)

type synonym vname = string
type synonym state = vname ⇒ nat

type synonym aexp = state ⇒ nat
type synonym bexp = state ⇒ bool

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



IMP - a small Imperative Language

Commands:
datatype com = SKIP

| Assign vname aexp ( := )
| Semi com com ( ; )
| Cond bexp com com (IF THEN ELSE )
| While bexp com (WHILE DO OD)

type synonym vname = string
type synonym state = vname ⇒ nat

type synonym aexp = state ⇒ nat
type synonym bexp = state ⇒ bool

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Example Program

Usual syntax:
B := 1;
WHILE A ̸= 0 DO

B := B ∗ A;
A := A − 1

OD

6 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Example Program

Usual syntax:
B := 1;
WHILE A ̸= 0 DO

B := B ∗ A;
A := A − 1

OD

Expressions are functions from state to bool or nat:
B := (λσ. 1);
WHILE (λσ. σ A ̸= 0) DO

B := (λσ. σ B ∗ σ A);
A := (λσ. σ A − 1)

OD

6 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



What does it do?

So far we have defined:

➜ Syntax of commands and expressions
➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?
➜ A wide field of its own
➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (map program syntax to e.g. state transformers)
• Axiomatic (e.g. Hoare logic later this lecture)

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



What does it do?

So far we have defined:
➜ Syntax of commands and expressions

➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?
➜ A wide field of its own
➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (map program syntax to e.g. state transformers)
• Axiomatic (e.g. Hoare logic later this lecture)

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



What does it do?

So far we have defined:
➜ Syntax of commands and expressions
➜ State of programs (function from variables to values)

Now we need:

the meaning (semantics) of programs

How to define execution of a program?
➜ A wide field of its own
➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (map program syntax to e.g. state transformers)
• Axiomatic (e.g. Hoare logic later this lecture)

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



What does it do?

So far we have defined:
➜ Syntax of commands and expressions
➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?
➜ A wide field of its own
➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (map program syntax to e.g. state transformers)
• Axiomatic (e.g. Hoare logic later this lecture)

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



What does it do?

So far we have defined:
➜ Syntax of commands and expressions
➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

➜ A wide field of its own
➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (map program syntax to e.g. state transformers)
• Axiomatic (e.g. Hoare logic later this lecture)

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



What does it do?

So far we have defined:
➜ Syntax of commands and expressions
➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?
➜ A wide field of its own

➜ Some choices:
• Operational (inductive relations, big step, small step)
• Denotational (map program syntax to e.g. state transformers)
• Axiomatic (e.g. Hoare logic later this lecture)

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



What does it do?

So far we have defined:
➜ Syntax of commands and expressions
➜ State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?
➜ A wide field of its own
➜ Some choices:

• Operational (inductive relations, big step, small step)
• Denotational (map program syntax to e.g. state transformers)
• Axiomatic (e.g. Hoare logic later this lecture)

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

⟨SKIP, σ⟩ → σ

e σ = v

⟨x := e, σ⟩ →

σ[x 7→ v ]

⟨c1, σ⟩ → σ′ ⟨c2, σ
′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

b σ = True

⟨c1, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

b σ = False

⟨c2, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

⟨SKIP, σ⟩ → σ

e σ = v

⟨x := e, σ⟩ →

σ[x 7→ v ]

⟨c1, σ⟩ → σ′ ⟨c2, σ
′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

b σ = True

⟨c1, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

b σ = False

⟨c2, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

⟨SKIP, σ⟩ → σ

e σ = v
⟨x := e, σ⟩ → σ[x 7→ v ]

⟨c1, σ⟩ → σ′ ⟨c2, σ
′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

b σ = True

⟨c1, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

b σ = False

⟨c2, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

⟨SKIP, σ⟩ → σ

e σ = v
⟨x := e, σ⟩ → σ[x 7→ v ]

⟨c1, σ⟩ → σ′ ⟨c2, σ
′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

b σ = True

⟨c1, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

b σ = False

⟨c2, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

⟨SKIP, σ⟩ → σ

e σ = v
⟨x := e, σ⟩ → σ[x 7→ v ]

⟨c1, σ⟩ → σ′ ⟨c2, σ
′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

b σ = True

⟨c1, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

b σ = False

⟨c2, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

⟨SKIP, σ⟩ → σ

e σ = v
⟨x := e, σ⟩ → σ[x 7→ v ]

⟨c1, σ⟩ → σ′ ⟨c2, σ
′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

b σ = True

⟨c1, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

b σ = False

⟨c2, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

⟨SKIP, σ⟩ → σ

e σ = v
⟨x := e, σ⟩ → σ[x 7→ v ]

⟨c1, σ⟩ → σ′ ⟨c2, σ
′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

b σ = True ⟨c1, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

b σ = False

⟨c2, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

⟨SKIP, σ⟩ → σ

e σ = v
⟨x := e, σ⟩ → σ[x 7→ v ]

⟨c1, σ⟩ → σ′ ⟨c2, σ
′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

b σ = True ⟨c1, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

b σ = False

⟨c2, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

⟨SKIP, σ⟩ → σ

e σ = v
⟨x := e, σ⟩ → σ[x 7→ v ]

⟨c1, σ⟩ → σ′ ⟨c2, σ
′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

b σ = True ⟨c1, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

b σ = False ⟨c2, σ⟩ → σ′

⟨IF b THEN c1 ELSE c2, σ⟩ → σ′

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

b σ = False

⟨WHILE b DO c OD, σ⟩ →

σ

b σ = True ⟨c, σ⟩ → σ′ ⟨WHILE b DO c OD, σ′⟩ → σ′′

⟨WHILE b DO c OD, σ⟩ →

σ′′

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

b σ = False
⟨WHILE b DO c OD, σ⟩ → σ

b σ = True ⟨c, σ⟩ → σ′ ⟨WHILE b DO c OD, σ′⟩ → σ′′

⟨WHILE b DO c OD, σ⟩ →

σ′′

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

b σ = False
⟨WHILE b DO c OD, σ⟩ → σ

b σ = True

⟨c, σ⟩ → σ′ ⟨WHILE b DO c OD, σ′⟩ → σ′′

⟨WHILE b DO c OD, σ⟩ →

σ′′

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

b σ = False
⟨WHILE b DO c OD, σ⟩ → σ

b σ = True ⟨c, σ⟩ → σ′

⟨WHILE b DO c OD, σ′⟩ → σ′′

⟨WHILE b DO c OD, σ⟩ →

σ′′

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Structural Operational Semantics

b σ = False
⟨WHILE b DO c OD, σ⟩ → σ

b σ = True ⟨c, σ⟩ → σ′ ⟨WHILE b DO c OD, σ′⟩ → σ′′

⟨WHILE b DO c OD, σ⟩ → σ′′

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



DEMO: SYNTAX AND SEMANTICS



Proofs about Programs

Now we know:
➜ What programs are: Syntax
➜ On what they work: State
➜ How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 6 implements the factorial.

lemma ⟨factorial, σ⟩ → σ′ =⇒ σ′B = fac (σA)
(where fac 0 = 1, fac (Suc n) = (Suc n) ∗ fac n)

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Proofs about Programs

Now we know:
➜ What programs are: Syntax
➜ On what they work: State
➜ How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 6 implements the factorial.

lemma ⟨factorial, σ⟩ → σ′ =⇒ σ′B = fac (σA)
(where fac 0 = 1, fac (Suc n) = (Suc n) ∗ fac n)

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Proofs about Programs

Now we know:
➜ What programs are: Syntax
➜ On what they work: State
➜ How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from slide 6 implements the factorial.

lemma ⟨factorial, σ⟩ → σ′ =⇒ σ′B = fac (σA)
(where fac 0 = 1, fac (Suc n) = (Suc n) ∗ fac n)

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



DEMO: PROOF ABOUT SEMANTICS



Too tedious

Induction needed for each loop

Is there something easier?

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Too tedious

Induction needed for each loop

Is there something easier?

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

{True} x := 2 {x = 2}
{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x − y {x = n − |y |}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}

{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x − y {x = n − |y |}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}
{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x − y {x = n − |y |}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}
{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x − y {x = n − |y |}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}
{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x − y {x = n − |y |}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x := 2 {x = 2}
{y = 2} x := 21 ∗ y {x = 42}

{x = n} IF y < 0 THEN x := x + y ELSE x := x − y {x = n − |y |}

{A = n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Meaning of a Hoare-Triple

{P} c {Q}

What are the assertions P and Q?

➜ Here: again functions from state to bool
(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ ∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′

Total Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′) ∧

(∀σ. P σ −→ ∃σ′. ⟨c, σ⟩ → σ′)

This lecture: partial correctness only (easier)

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Meaning of a Hoare-Triple

{P} c {Q}

What are the assertions P and Q?
➜ Here: again functions from state to bool

(shallow embedding of assertions)

➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ ∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′

Total Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′) ∧

(∀σ. P σ −→ ∃σ′. ⟨c, σ⟩ → σ′)

This lecture: partial correctness only (easier)

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Meaning of a Hoare-Triple

{P} c {Q}

What are the assertions P and Q?
➜ Here: again functions from state to bool

(shallow embedding of assertions)
➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ ∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′

Total Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′) ∧

(∀σ. P σ −→ ∃σ′. ⟨c, σ⟩ → σ′)

This lecture: partial correctness only (easier)

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Meaning of a Hoare-Triple

{P} c {Q}

What are the assertions P and Q?
➜ Here: again functions from state to bool

(shallow embedding of assertions)
➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ ∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′

Total Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′) ∧

(∀σ. P σ −→ ∃σ′. ⟨c, σ⟩ → σ′)

This lecture: partial correctness only (easier)

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Meaning of a Hoare-Triple

{P} c {Q}

What are the assertions P and Q?
➜ Here: again functions from state to bool

(shallow embedding of assertions)
➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ ∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′

Total Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′) ∧

(∀σ. P σ −→ ∃σ′. ⟨c, σ⟩ → σ′)

This lecture: partial correctness only (easier)

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Meaning of a Hoare-Triple

{P} c {Q}

What are the assertions P and Q?
➜ Here: again functions from state to bool

(shallow embedding of assertions)
➜ Other choice: syntax and semantics for assertions (deep embedding)

What does {P} c {Q} mean?

Partial Correctness:
|= {P} c {Q} ≡ ∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′

Total Correctness:
|= {P} c {Q} ≡ (∀σ σ′. P σ ∧ ⟨c, σ⟩ → σ′ −→ Q σ′) ∧

(∀σ. P σ −→ ∃σ′. ⟨c, σ⟩ → σ′)

This lecture: partial correctness only (easier)

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

{P} SKIP {P}

{P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q
{P} WHILE b DO c OD {Q}

P =⇒ P ′

{P ′} c {Q′}

Q′ =⇒ Q

{P} c {Q}

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q
{P} WHILE b DO c OD {Q}

P =⇒ P ′

{P ′} c {Q′}

Q′ =⇒ Q

{P} c {Q}

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q
{P} WHILE b DO c OD {Q}

P =⇒ P ′

{P ′} c {Q′}

Q′ =⇒ Q

{P} c {Q}

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q
{P} WHILE b DO c OD {Q}

P =⇒ P ′

{P ′} c {Q′}

Q′ =⇒ Q

{P} c {Q}

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q}

{P ∧ ¬b} c2 {Q}

{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q
{P} WHILE b DO c OD {Q}

P =⇒ P ′

{P ′} c {Q′}

Q′ =⇒ Q

{P} c {Q}

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q
{P} WHILE b DO c OD {Q}

P =⇒ P ′

{P ′} c {Q′}

Q′ =⇒ Q

{P} c {Q}

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q
{P} WHILE b DO c OD {Q}

P =⇒ P ′

{P ′} c {Q′}

Q′ =⇒ Q

{P} c {Q}

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q
{P} WHILE b DO c OD {Q}

P =⇒ P ′

{P ′} c {Q′}

Q′ =⇒ Q

{P} c {Q}

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

{P} SKIP {P} {P[x 7→ e]} x := e {P}

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P} P ∧ ¬b =⇒ Q
{P} WHILE b DO c OD {Q}

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q
{P} c {Q}

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Hoare Rules

⊢ {P} SKIP {P} ⊢ {λσ. P (σ(x := e σ))} x := e {P}

⊢ {P} c1 {R} ⊢ {R} c2 {Q}
⊢ {P} c1; c2 {Q}

⊢ {λσ. P σ ∧ b σ} c1 {Q} ⊢ {λσ. P σ ∧ ¬b σ} c2 {Q}
⊢ {P} IF b THEN c1 ELSE c2 {Q}

⊢ {λσ. P σ ∧ b σ} c {P}
∧
σ. P σ ∧ ¬b σ =⇒ Q σ

⊢ {P} WHILE b DO c OD {Q}∧
σ. P σ =⇒ P ′ σ ⊢ {P ′} c {Q′}

∧
σ. Q′ σ =⇒ Q σ

⊢ {P} c {Q}

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Are the Rules Correct?

Soundness: ⊢ {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ⊢ {P} c {Q}

Demo: Hoare Logic in Isabelle

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Are the Rules Correct?

Soundness: ⊢ {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ⊢ {P} c {Q}

Demo: Hoare Logic in Isabelle

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Are the Rules Correct?

Soundness: ⊢ {P} c {Q} =⇒|= {P} c {Q}

Proof: by rule induction on ⊢ {P} c {Q}

Demo: Hoare Logic in Isabelle

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License


