
COMP4161
Advanced Topics in Software

Verification

based on slides by J. Blanchette, L. Bulwahn and T. Nipkow

Thomas Sewell, Miki Tanaka, Rob Sison

T3/2024

Content

➜ Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

➜ Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c]

aa1 due; ba2 due; ca3 due

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Overview

Part 1: Automatic Proof and Disproof

➜ Sledgehammer: automatic proofs

➜ Quickcheck: counter example by testing
➜ Nitpick: counter example by SAT

Based on ancient slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias
Nipkow (TUM).

Part 2: Structured Proofs

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Overview

Part 1: Automatic Proof and Disproof

➜ Sledgehammer: automatic proofs
➜ Quickcheck: counter example by testing

➜ Nitpick: counter example by SAT

Based on ancient slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias
Nipkow (TUM).

Part 2: Structured Proofs

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Overview

Part 1: Automatic Proof and Disproof

➜ Sledgehammer: automatic proofs
➜ Quickcheck: counter example by testing
➜ Nitpick: counter example by SAT

Based on ancient slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias
Nipkow (TUM).

Part 2: Structured Proofs

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Overview

Part 1: Automatic Proof and Disproof

➜ Sledgehammer: automatic proofs
➜ Quickcheck: counter example by testing
➜ Nitpick: counter example by SAT

Based on ancient slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias
Nipkow (TUM).

Part 2: Structured Proofs

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation

Dramatic improvements in fully automated proofs in the last 2
decades.

➜ First-order logic (ATP): Otter, Vampire, E, SPASS
➜ Propositional logic (SAT): MiniSAT, Chaff, RSat
➜ SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:
Efficient reasoning engines, and restricted logics.

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation

Dramatic improvements in fully automated proofs in the last 2
decades.

➜ First-order logic (ATP): Otter, Vampire, E, SPASS

➜ Propositional logic (SAT): MiniSAT, Chaff, RSat
➜ SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:
Efficient reasoning engines, and restricted logics.

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation

Dramatic improvements in fully automated proofs in the last 2
decades.

➜ First-order logic (ATP): Otter, Vampire, E, SPASS
➜ Propositional logic (SAT): MiniSAT, Chaff, RSat

➜ SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:
Efficient reasoning engines, and restricted logics.

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation

Dramatic improvements in fully automated proofs in the last 2
decades.

➜ First-order logic (ATP): Otter, Vampire, E, SPASS
➜ Propositional logic (SAT): MiniSAT, Chaff, RSat
➜ SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:
Efficient reasoning engines, and restricted logics.

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation

Dramatic improvements in fully automated proofs in the last 2
decades.

➜ First-order logic (ATP): Otter, Vampire, E, SPASS
➜ Propositional logic (SAT): MiniSAT, Chaff, RSat
➜ SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:
Efficient reasoning engines, and restricted logics.

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto),
arithmetic

2000s embrace external tools, but don’t trust them
(ATP/SMT/SAT)

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto),
arithmetic

2000s embrace external tools, but don’t trust them
(ATP/SMT/SAT)

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto),
arithmetic

2000s embrace external tools, but don’t trust them
(ATP/SMT/SAT)

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Sledgehammer

Sledgehammer:
➜ Connects Isabelle with ATPs and SMT solvers:

E, SPASS, Vampire, CVC4, Yices, Z3

➜ Simple invocation:
➜ Users don’t need to select or know facts
➜ or ensure the problem is first-order
➜ or know anything about the automated prover

➜ Exploits local parallelism and remote servers

6 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Sledgehammer

Sledgehammer:
➜ Connects Isabelle with ATPs and SMT solvers:

E, SPASS, Vampire, CVC4, Yices, Z3

➜ Simple invocation:
➜ Users don’t need to select or know facts
➜ or ensure the problem is first-order
➜ or know anything about the automated prover

➜ Exploits local parallelism and remote servers

6 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Sledgehammer

Sledgehammer:
➜ Connects Isabelle with ATPs and SMT solvers:

E, SPASS, Vampire, CVC4, Yices, Z3

➜ Simple invocation:
➜ Users don’t need to select or know facts
➜ or ensure the problem is first-order
➜ or know anything about the automated prover

➜ Exploits local parallelism and remote servers

6 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO: SLEDGEHAMMER

Sledgehammer Architecture

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fact Selection

Provers perform poorly if given 1000s of facts.
➜ Best number of facts depends on the prover
➜ Need to take care which facts we give them
➜ Idea: order facts by relevance, give top n to prover (n =

250, 1000, . . .)

➜ Meng & Paulson method: lightweight, symbol-based filter
➜ Machine learning method:

look at previous proofs to get a probability of relevance

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fact Selection

Provers perform poorly if given 1000s of facts.
➜ Best number of facts depends on the prover
➜ Need to take care which facts we give them
➜ Idea: order facts by relevance, give top n to prover (n =

250, 1000, . . .)
➜ Meng & Paulson method: lightweight, symbol-based filter

➜ Machine learning method:
look at previous proofs to get a probability of relevance

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fact Selection

Provers perform poorly if given 1000s of facts.
➜ Best number of facts depends on the prover
➜ Need to take care which facts we give them
➜ Idea: order facts by relevance, give top n to prover (n =

250, 1000, . . .)
➜ Meng & Paulson method: lightweight, symbol-based filter
➜ Machine learning method:

look at previous proofs to get a probability of relevance

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

➜ First-order:
➜ SK combinators, λ-lifting
➜ Explicit function application operator

➜ Encode types:
➜ Monomorphise (generate multiple instances), or
➜ Encode polymorphism on term level

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

➜ First-order:
➜ SK combinators, λ-lifting
➜ Explicit function application operator

➜ Encode types:
➜ Monomorphise (generate multiple instances), or
➜ Encode polymorphism on term level

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

➜ First-order:
➜ SK combinators, λ-lifting
➜ Explicit function application operator

➜ Encode types:
➜ Monomorphise (generate multiple instances), or
➜ Encode polymorphism on term level

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Reconstruction

We don’t want to trust the external provers.

Need to check/reconstruct proof.

➜ Re-find using Metis
Usually fast and reliable (sometimes too slow)

➜ Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

➜ Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

➜ Recast into structured Isar proof
Fast, not always readable.

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

➜ Re-find using Metis
Usually fast and reliable (sometimes too slow)

➜ Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

➜ Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

➜ Recast into structured Isar proof
Fast, not always readable.

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

➜ Re-find using Metis
Usually fast and reliable (sometimes too slow)

➜ Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

➜ Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

➜ Recast into structured Isar proof
Fast, not always readable.

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

➜ Re-find using Metis
Usually fast and reliable (sometimes too slow)

➜ Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

➜ Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

➜ Recast into structured Isar proof
Fast, not always readable.

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

➜ Re-find using Metis
Usually fast and reliable (sometimes too slow)

➜ Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

➜ Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

➜ Recast into structured Isar proof
Fast, not always readable.

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

➜ Re-find using Metis
Usually fast and reliable (sometimes too slow)

➜ Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

➜ Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

➜ Recast into structured Isar proof
Fast, not always readable.

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Judgement Day (up to 2013)

Evaluating Sledgehammer:
➜ 1240 goals out of 7 existing theories.
➜ How many can sledgehammer solve?

➜ 2010: E, SPASS, Vampire (for 5-120s). 46%
ESV × 5s ≈ V × 120s

➜ 2011: Add E-SInE, CVC2, Yices, Z3 (30s).
Z3 > V

➜ 2012: Better integration with SPASS. 64%
SPASS best (small margin)

➜ 2013: Machine learning for fact selection. 69%
Improves a few percent across provers.

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Judgement Day (up to 2013)

Evaluating Sledgehammer:
➜ 1240 goals out of 7 existing theories.
➜ How many can sledgehammer solve?

➜ 2010: E, SPASS, Vampire (for 5-120s). 46%
ESV × 5s ≈ V × 120s

➜ 2011: Add E-SInE, CVC2, Yices, Z3 (30s).
Z3 > V

➜ 2012: Better integration with SPASS. 64%
SPASS best (small margin)

➜ 2013: Machine learning for fact selection. 69%
Improves a few percent across provers.

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Judgement Day (up to 2013)

Evaluating Sledgehammer:
➜ 1240 goals out of 7 existing theories.
➜ How many can sledgehammer solve?

➜ 2010: E, SPASS, Vampire (for 5-120s). 46%
ESV × 5s ≈ V × 120s

➜ 2011: Add E-SInE, CVC2, Yices, Z3 (30s).
Z3 > V

➜ 2012: Better integration with SPASS. 64%
SPASS best (small margin)

➜ 2013: Machine learning for fact selection. 69%
Improves a few percent across provers.

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Judgement Day (up to 2013)

Evaluating Sledgehammer:
➜ 1240 goals out of 7 existing theories.
➜ How many can sledgehammer solve?

➜ 2010: E, SPASS, Vampire (for 5-120s). 46%
ESV × 5s ≈ V × 120s

➜ 2011: Add E-SInE, CVC2, Yices, Z3 (30s).
Z3 > V

➜ 2012: Better integration with SPASS. 64%
SPASS best (small margin)

➜ 2013: Machine learning for fact selection. 69%
Improves a few percent across provers.

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Judgement Day (up to 2013)

Evaluating Sledgehammer:
➜ 1240 goals out of 7 existing theories.
➜ How many can sledgehammer solve?

➜ 2010: E, SPASS, Vampire (for 5-120s). 46%
ESV × 5s ≈ V × 120s

➜ 2011: Add E-SInE, CVC2, Yices, Z3 (30s).
Z3 > V

➜ 2012: Better integration with SPASS. 64%
SPASS best (small margin)

➜ 2013: Machine learning for fact selection. 69%
Improves a few percent across provers.

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Evaluation

54%54%54%54% 46%

3 ATPs x 30s

2010

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

36%36%36%36%36%

64%

(4 ATPs + 3 SMTs) x 30s0s0s

50%50%50%50%50% 50%

(4 ATPs + 3 SMTs) x 30s
nontrivial goals

2012

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Judgement Day (2016)

919/1230 = 74%

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Sledgehammer rules!

Example application:

➜ Large Isabelle/HOL repository of algebras for modelling imper-
ative programs
(Kleene Algebra, Hoare logic, . . ., ≈ 1000 lemmas)

➜ Intricate refinement and termination theorems

➜ Sledgehammer and Z3 automate algebraic proofs at textbook
level.

”The integration of ATP, SMT, and Nitpick is for our purposes
very very helpful.” – G. Struth

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Sledgehammer rules!

Example application:

➜ Large Isabelle/HOL repository of algebras for modelling imper-
ative programs
(Kleene Algebra, Hoare logic, . . ., ≈ 1000 lemmas)

➜ Intricate refinement and termination theorems

➜ Sledgehammer and Z3 automate algebraic proofs at textbook
level.

”The integration of ATP, SMT, and Nitpick is for our purposes
very very helpful.” – G. Struth

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DISPROOF

Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems

, but it can refute conjectures!

Sad facts of life:
➜ Most lemma statements are wrong the first time.
➜ Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
➜ Most lemma statements are wrong the first time.
➜ Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
➜ Most lemma statements are wrong the first time.
➜ Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
➜ Most lemma statements are wrong the first time.
➜ Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Quickcheck

Lightweight validation by testing.

➜ Motivated by Haskell’s QuickCheck

➜ Uses Isabelle’s code generator

➜ Fast

➜ Runs in background, proves you wrong as you type.
➜ You have probably seen this already!

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Quickcheck

Lightweight validation by testing.

➜ Motivated by Haskell’s QuickCheck

➜ Uses Isabelle’s code generator

➜ Fast

➜ Runs in background, proves you wrong as you type.
➜ You have probably seen this already!

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Quickcheck

Covers a number of testing approaches:

➜ Random and exhaustive testing.
➜ Smart test data generators.
➜ Narrowing-based (symbolic) testing.

Creates test data generators automatically.

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO: QUICKCHECK

Test generators for datatypes

Fast iteration in continuation-passing-style

datatype α list = Nil | Cons α (α list)

Test function:

testα list P = P Nil andalso testα (λx. testα list (λxs. P (Cons x xs)))

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Test generators for predicates

distinct xs =⇒ distinct (remove1 x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinctα list P = P Nil andalso
testα (λx. test-distinctα list (if x /∈ xs then (λxs. P (Cons x xs))
else True))

Use data flow analysis to figure out which variables
must be computed and which generated.

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Test generators for predicates

distinct xs =⇒ distinct (remove1 x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinctα list P = P Nil andalso
testα (λx. test-distinctα list (if x /∈ xs then (λxs. P (Cons x xs))
else True))

Use data flow analysis to figure out which variables
must be computed and which generated.

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Test generators for predicates

distinct xs =⇒ distinct (remove1 x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinctα list P = P Nil andalso
testα (λx. test-distinctα list (if x /∈ xs then (λxs. P (Cons x xs))
else True))

Use data flow analysis to figure out which variables
must be computed and which generated.

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Test generators for predicates

distinct xs =⇒ distinct (remove1 x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinctα list P = P Nil andalso
testα (λx. test-distinctα list (if x /∈ xs then (λxs. P (Cons x xs))
else True))

Use data flow analysis to figure out which variables
must be computed and which generated.

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Narrowing

Symbolic execution with demand-driven refinement
➜ Test cases can contain variables
➜ If execution cannot proceed: instantiate with further symbolic

terms

Pays off if large search spaces can be discarded:
distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.

25 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Narrowing

Symbolic execution with demand-driven refinement
➜ Test cases can contain variables
➜ If execution cannot proceed: instantiate with further symbolic

terms

Pays off if large search spaces can be discarded:
distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.

25 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Narrowing

Symbolic execution with demand-driven refinement
➜ Test cases can contain variables
➜ If execution cannot proceed: instantiate with further symbolic

terms

Pays off if large search spaces can be discarded:
distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.

25 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Quickcheck Limitations

Only executable specifications!

➜ No equality on functions with infinite domain

➜ No axiomatic specifications

26 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

NITPICK

Nitpick

Finite model finder

➜ Based on SAT via Kodkod (backend of Alloy prover)

➜ Soundly approximates infinite types

28 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nitpick Successes

➜ Algebraic methods
➜ C++ memory model
➜ Found soundness bugs in TPS and LEO-II

Fan mail:
”Last night I got stuck on a goal I was sure was a theorem.
After 5–10 minutes I gave Nitpick a try, and within a few secs
it had found a splendid counterexample—despite the mess of
locales and type classes in the context!”

29 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Nitpick Successes

➜ Algebraic methods
➜ C++ memory model
➜ Found soundness bugs in TPS and LEO-II

Fan mail:
”Last night I got stuck on a goal I was sure was a theorem.
After 5–10 minutes I gave Nitpick a try, and within a few secs
it had found a splendid counterexample—despite the mess of
locales and type classes in the context!”

29 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO: NITPICK

Automation Summary

➜ Proof: Sledgehammer

➜ Counter examples: Quickcheck
➜ Counter examples: Nitpick

31 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation Summary

➜ Proof: Sledgehammer
➜ Counter examples: Quickcheck

➜ Counter examples: Nitpick

31 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Automation Summary

➜ Proof: Sledgehammer
➜ Counter examples: Quickcheck
➜ Counter examples: Nitpick

31 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

ISAR (PART 1)

A LANGUAGE FOR STRUCTURED PROOFS

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

33 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)
apply (cases A)
apply (rule disjI1)
apply (erule impE)
apply assumption

apply assumption
apply (rule disjI2)
apply assumption

apply (rule impI)
apply (erule disjE)
apply assumption

apply (erule notE)
apply assumption
done

or by blast

OK it’s true. But WHY? This doesn’t look like typical maths proofs.

34 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)
apply (cases A)
apply (rule disjI1)
apply (erule impE)
apply assumption

apply assumption
apply (rule disjI2)
apply assumption

apply (rule impI)
apply (erule disjE)
apply assumption

apply (erule notE)
apply assumption
done

or by blast

OK it’s true. But WHY? This doesn’t look like typical maths proofs.

34 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)
apply (cases A)
apply (rule disjI1)
apply (erule impE)
apply assumption

apply assumption
apply (rule disjI2)
apply assumption

apply (rule impI)
apply (erule disjE)
apply assumption

apply (erule notE)
apply assumption
done

or by blast

OK it’s true. But WHY?

This doesn’t look like typical maths proofs.

34 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)
apply (cases A)
apply (rule disjI1)
apply (erule impE)
apply assumption

apply assumption
apply (rule disjI2)
apply assumption

apply (rule impI)
apply (erule disjE)
apply assumption

apply (erule notE)
apply assumption
done

or by blast

OK it’s true. But WHY? This doesn’t look like typical maths proofs.

34 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar

apply scripts

What about..

➜ hard to read

➜ Elegance?
➜ hard to maintain ➜ Explaining deeper insights?

No explicit structure. Isar!

35 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar

apply scripts

What about..

➜ hard to read

➜ Elegance?

➜ hard to maintain

➜ Explaining deeper insights?

No explicit structure. Isar!

35 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar

apply scripts

What about..

➜ hard to read

➜ Elegance?

➜ hard to maintain

➜ Explaining deeper insights?

No explicit structure.

Isar!

35 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar

apply scripts

What about..

➜ hard to read ➜ Elegance?
➜ hard to maintain

➜ Explaining deeper insights?

No explicit structure.

Isar!

35 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar

apply scripts What about..

➜ hard to read ➜ Elegance?
➜ hard to maintain ➜ Explaining deeper insights?

No explicit structure.

Isar!

35 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar

apply scripts What about..

➜ hard to read ➜ Elegance?
➜ hard to maintain ➜ Explaining deeper insights?

No explicit structure. Isar!

35 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

36 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

36 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

36 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar core syntax

proof = proof [method] statement∗ qed
| by method

37 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar core syntax

proof = proof [method] statement∗ qed
| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

37 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar core syntax

proof = proof [method] statement∗ qed
| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

37 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar core syntax

proof = proof [method] statement∗ qed
| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula

37 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”

proof (rule conjI)
assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal
➜ proof applies a single rule that fits
➜ proof - does nothing to the goal

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal
➜ proof applies a single rule that fits
➜ proof - does nothing to the goal

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal
➜ proof applies a single rule that fits
➜ proof - does nothing to the goal

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next

assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal
➜ proof applies a single rule that fits
➜ proof - does nothing to the goal

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal
➜ proof applies a single rule that fits
➜ proof - does nothing to the goal

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal
➜ proof applies a single rule that fits
➜ proof - does nothing to the goal

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits
➜ proof - does nothing to the goal

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal
➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal
➜ proof applies a single rule that fits
➜ proof - does nothing to the goal

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How do I know what to Assume and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to
1. [[A;B]] =⇒ A
2. [[A;B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”
➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

39 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How do I know what to Assume and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to
1. [[A;B]] =⇒ A
2. [[A;B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”
➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

39 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How do I know what to Assume and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to
1. [[A;B]] =⇒ A
2. [[A;B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”

➜ We are allowed to assume A,
because A is in the assumptions of the proof state.

39 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How do I know what to Assume and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to
1. [[A;B]] =⇒ A
2. [[A;B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”
➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

39 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B”

[prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]

proof (rule conjI) [state]
assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]

from A [chain] show ”A” [prove] by assumption [state]
next [state] . . .

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain]

show ”A” [prove] by assumption [state]
next [state] . . .

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

➜ [prove]:
goal has been stated, proof needs to follow.

➜ [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

➜ [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Have

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”
proof -

have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed

41 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Have

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”

proof -
have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed

41 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Have

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”
proof -

have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed

41 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof

➜ proof picks an intro rule automatically
➜ conclusion of rule must unify with A ∧ B

➜ now proof picks an elim rule automatically
➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

43 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof
➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

➜ now proof picks an elim rule automatically
➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

43 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof
➜ proof picks an intro rule automatically
➜ conclusion of rule must unify with A ∧ B

➜ now proof picks an elim rule automatically
➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

43 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof
➜ proof picks an intro rule automatically
➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .
assume AB: ”A ∧ B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically
➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

43 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof
➜ proof picks an intro rule automatically
➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .
assume AB: ”A ∧ B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

43 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof
➜ proof picks an intro rule automatically
➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .
assume AB: ”A ∧ B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically
➜ triggered by from

➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

43 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof
➜ proof picks an intro rule automatically
➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .
assume AB: ”A ∧ B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically
➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

43 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof
➜ proof picks an intro rule automatically
➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .
assume AB: ”A ∧ B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically
➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

43 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

44 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

44 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

44 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

44 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

45 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this

thus = then show
hence = then have

with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

45 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

45 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have

with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

45 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

45 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

45 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

Moreover and Ultimately

have X1: P1 . . .

have P1 . . .

have X2: P2 . . .

moreover have P2 . . .

...

...

have Xn: Pn . . .

moreover have Pn . . .

from X1 . . .Xn show . . .

ultimately show . . .

wastes brain power
on names X1 . . .Xn

47 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Moreover and Ultimately

have X1: P1 . . .

have P1 . . .

have X2: P2 . . .

moreover have P2 . . .

...

...

have Xn: Pn . . .

moreover have Pn . . .

from X1 . . .Xn show . . .

ultimately show . . .

wastes brain power
on names X1 . . .Xn

47 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Moreover and Ultimately

have X1: P1 . . . have P1 . . .
have X2: P2 . . . moreover have P2 . . .
...

...
have Xn: Pn . . . moreover have Pn . . .
from X1 . . .Xn show . . . ultimately show . . .

wastes brain power
on names X1 . . .Xn

47 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

48 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

48 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

48 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

48 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast
qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

48 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

48 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

48 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

48 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply (. . .)
...
apply (. . .)
done

49 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

ISAR

(PART 2)

DATATYPES IN ISAR

Datatype case distinction

proof (cases term)
case Constructor1
...

next
...
next

case (Constructork x⃗)
· · · x⃗ · · ·

qed

52 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Datatype case distinction

proof (cases term)
case Constructor1
...

next
...
next

case (Constructork x⃗)
· · · x⃗ · · ·

qed

case (Constructori x⃗) ≡
fix x⃗ assume Constructori : ”term = Constructori x⃗”

52 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Structural induction for nat

show P n
proof (induct n)

case 0 ≡ let ?case = P 0
. . .
show ?case

next
case (Suc n) ≡ fix n assume Suc: P n
. . . let ?case = P (Suc n)
· · · n · · ·
show ?case

qed

53 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Structural induction: =⇒ and
∧

show ”
∧

x . A n =⇒ P n”
proof (induct n)

case 0 ≡ fix x assume 0: ”A 0”
. . . let ?case = ”P 0”
show ?case

next
case (Suc n) ≡ fix n and x
. . . assume Suc: ”

∧
x . A n =⇒ P n”

· · · n · · · ”A (Suc n)”
. . . let ?case = ”P (Suc n)”
show ?case

qed

54 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO: DATATYPES IN ISAR

CALCULATIONAL REASONING

The Goal

Prove:
x · x−1 = 1 using: assoc: (x · y) · z = x · (y · z)

left inv: x−1 · x = 1
left one: 1 · x = x

57 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Goal

Prove:
x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

assoc: (x · y) · z = x · (y · z)
left inv: x−1 · x = 1

left one: 1 · x = x

Can we do this in Isabelle?

➜ Simplifier: too eager
➜ Manual: difficult in apply style
➜ Isar: with the methods we know, too verbose

58 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Goal

Prove:
x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

assoc: (x · y) · z = x · (y · z)
left inv: x−1 · x = 1

left one: 1 · x = x

Can we do this in Isabelle?

➜ Simplifier: too eager
➜ Manual: difficult in apply style
➜ Isar: with the methods we know, too verbose

58 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Goal

Prove:
x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

assoc: (x · y) · z = x · (y · z)
left inv: x−1 · x = 1

left one: 1 · x = x

Can we do this in Isabelle?

➜ Simplifier: too eager

➜ Manual: difficult in apply style
➜ Isar: with the methods we know, too verbose

58 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Goal

Prove:
x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

assoc: (x · y) · z = x · (y · z)
left inv: x−1 · x = 1

left one: 1 · x = x

Can we do this in Isabelle?

➜ Simplifier: too eager
➜ Manual: difficult in apply style

➜ Isar: with the methods we know, too verbose

58 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Goal

Prove:
x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

assoc: (x · y) · z = x · (y · z)
left inv: x−1 · x = 1

left one: 1 · x = x

Can we do this in Isabelle?

➜ Simplifier: too eager
➜ Manual: difficult in apply style
➜ Isar: with the methods we know, too verbose

58 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Chains of equations

The Problem

a = b
. . . = c
. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)
Solution in Isar:

➜ Keywords also and finally to delimit steps
➜ . . . : predefined schematic term variable,

refers to right hand side of last expression
➜ Automatic use of transitivity rules to connect steps

59 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Chains of equations

The Problem

a = b
. . . = c
. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:
➜ Keywords also and finally to delimit steps
➜ . . . : predefined schematic term variable,

refers to right hand side of last expression
➜ Automatic use of transitivity rules to connect steps

59 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Chains of equations

The Problem

a = b
. . . = c
. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)
Solution in Isar:

➜ Keywords also and finally to delimit steps

➜ . . . : predefined schematic term variable,
refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

59 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Chains of equations

The Problem

a = b
. . . = c
. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)
Solution in Isar:

➜ Keywords also and finally to delimit steps
➜ . . . : predefined schematic term variable,

refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

59 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Chains of equations

The Problem

a = b
. . . = c
. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)
Solution in Isar:

➜ Keywords also and finally to delimit steps
➜ . . . : predefined schematic term variable,

refers to right hand side of last expression
➜ Automatic use of transitivity rules to connect steps

59 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

also/finally

have ”t0 = t1” [proof]

calculation register

also

”t0 = t1”
have ”. . . = t2” [proof]
also ”t0 = t2”
...

...
also ”t0 = tn−1”
have ”· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact ”t0 = tn” into the proof

60 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

also/finally

have ”t0 = t1” [proof] calculation register
also ”t0 = t1”

have ”. . . = t2” [proof]
also ”t0 = t2”
...

...
also ”t0 = tn−1”
have ”· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact ”t0 = tn” into the proof

60 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

also/finally

have ”t0 = t1” [proof] calculation register
also ”t0 = t1”
have ”. . . = t2” [proof]

also ”t0 = t2”
...

...
also ”t0 = tn−1”
have ”· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact ”t0 = tn” into the proof

60 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

also/finally

have ”t0 = t1” [proof] calculation register
also ”t0 = t1”
have ”. . . = t2” [proof]
also ”t0 = t2”

...
...

also ”t0 = tn−1”
have ”· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact ”t0 = tn” into the proof

60 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

also/finally

have ”t0 = t1” [proof] calculation register
also ”t0 = t1”
have ”. . . = t2” [proof]
also ”t0 = t2”
...

...
also ”t0 = tn−1”

have ”· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact ”t0 = tn” into the proof

60 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

also/finally

have ”t0 = t1” [proof] calculation register
also ”t0 = t1”
have ”. . . = t2” [proof]
also ”t0 = t2”
...

...
also ”t0 = tn−1”
have ”· · · = tn” [proof]

finally t0 = tn
show P
— ’finally’ pipes fact ”t0 = tn” into the proof

60 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

also/finally

have ”t0 = t1” [proof] calculation register
also ”t0 = t1”
have ”. . . = t2” [proof]
also ”t0 = t2”
...

...
also ”t0 = tn−1”
have ”· · · = tn” [proof]
finally t0 = tn

show P
— ’finally’ pipes fact ”t0 = tn” into the proof

60 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

also/finally

have ”t0 = t1” [proof] calculation register
also ”t0 = t1”
have ”. . . = t2” [proof]
also ”t0 = t2”
...

...
also ”t0 = tn−1”
have ”· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact ”t0 = tn” into the proof

60 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More about also

➜ Works for all combinations of =, ≤ and <.

➜ Uses all rules declared as [trans].
➜ To view all combinations: print trans rules

61 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More about also

➜ Works for all combinations of =, ≤ and <.
➜ Uses all rules declared as [trans].

➜ To view all combinations: print trans rules

61 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More about also

➜ Works for all combinations of =, ≤ and <.
➜ Uses all rules declared as [trans].
➜ To view all combinations: print trans rules

61 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]
also
have ”. . .⊙ r2” [proof]
also

Anatomy of a [trans] rule:
➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:
➜ pure transitivity: [[a = b; b = c]] =⇒ a = c
➜ mixed: [[a ≤ b; b < c]] =⇒ a < c
➜ substitution: [[P a; a = b]] =⇒ P b
➜ antisymmetry: [[a < b; b < a]] =⇒ False
➜ monotonicity: [[a = f b; b < c;

∧
x y . x < y =⇒ f x < f y]] =⇒ a < f c

62 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]
also
have ”. . .⊙ r2” [proof]
also

Anatomy of a [trans] rule:
➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:
➜ pure transitivity: [[a = b; b = c]] =⇒ a = c
➜ mixed: [[a ≤ b; b < c]] =⇒ a < c
➜ substitution: [[P a; a = b]] =⇒ P b
➜ antisymmetry: [[a < b; b < a]] =⇒ False
➜ monotonicity: [[a = f b; b < c;

∧
x y . x < y =⇒ f x < f y]] =⇒ a < f c

62 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]
also
have ”. . .⊙ r2” [proof]
also

Anatomy of a [trans] rule:
➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c
➜ mixed: [[a ≤ b; b < c]] =⇒ a < c
➜ substitution: [[P a; a = b]] =⇒ P b
➜ antisymmetry: [[a < b; b < a]] =⇒ False
➜ monotonicity: [[a = f b; b < c;

∧
x y . x < y =⇒ f x < f y]] =⇒ a < f c

62 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]
also
have ”. . .⊙ r2” [proof]
also

Anatomy of a [trans] rule:
➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:
➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c
➜ substitution: [[P a; a = b]] =⇒ P b
➜ antisymmetry: [[a < b; b < a]] =⇒ False
➜ monotonicity: [[a = f b; b < c;

∧
x y . x < y =⇒ f x < f y]] =⇒ a < f c

62 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]
also
have ”. . .⊙ r2” [proof]
also

Anatomy of a [trans] rule:
➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:
➜ pure transitivity: [[a = b; b = c]] =⇒ a = c
➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b
➜ antisymmetry: [[a < b; b < a]] =⇒ False
➜ monotonicity: [[a = f b; b < c;

∧
x y . x < y =⇒ f x < f y]] =⇒ a < f c

62 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]
also
have ”. . .⊙ r2” [proof]
also

Anatomy of a [trans] rule:
➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:
➜ pure transitivity: [[a = b; b = c]] =⇒ a = c
➜ mixed: [[a ≤ b; b < c]] =⇒ a < c
➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ False
➜ monotonicity: [[a = f b; b < c;

∧
x y . x < y =⇒ f x < f y]] =⇒ a < f c

62 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]
also
have ”. . .⊙ r2” [proof]
also

Anatomy of a [trans] rule:
➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:
➜ pure transitivity: [[a = b; b = c]] =⇒ a = c
➜ mixed: [[a ≤ b; b < c]] =⇒ a < c
➜ substitution: [[P a; a = b]] =⇒ P b
➜ antisymmetry: [[a < b; b < a]] =⇒ False

➜ monotonicity: [[a = f b; b < c;
∧

x y . x < y =⇒ f x < f y]] =⇒ a < f c

62 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]
also
have ”. . .⊙ r2” [proof]
also

Anatomy of a [trans] rule:
➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:
➜ pure transitivity: [[a = b; b = c]] =⇒ a = c
➜ mixed: [[a ≤ b; b < c]] =⇒ a < c
➜ substitution: [[P a; a = b]] =⇒ P b
➜ antisymmetry: [[a < b; b < a]] =⇒ False
➜ monotonicity: [[a = f b; b < c;

∧
x y . x < y =⇒ f x < f y]] =⇒ a < f c

62 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

