COMP4161 Advanced Topics in Software Verification

based on slides by J. Blanchette, L. Bulwahn and T. Nipkow

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

a a1 due; *^b* a2 due; *^c* a3 due

Overview

Part 1: Automatic Proof and Disproof

- \rightarrow Sledgehammer: automatic proofs
- \rightarrow Quickcheck: counter example by testing
- \rightarrow Nitpick: counter example by SAT

Based on ancient slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow (TUM).

Part 2: Structured Proofs

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

- **→** First-order logic (ATP): Otter, Vampire, E, SPASS
- → Propositional logic (SAT): MiniSAT, Chaff, RSat
- → SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:

Efficient reasoning engines, and restricted logics.

Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto), arithmetic

2000s embrace external tools, but don't trust them (ATP/SMT/SAT)

Sledgehammer

Sledgehammer:

- ➜ *Connects Isabelle with ATPs and SMT solvers: E, SPASS, Vampire, CVC4, Yices, Z3*
- ➜ *Simple invocation:*
	- ➜ *Users don't need to select or know facts*
	- ➜ *or ensure the problem is first-order*
	- ➜ *or know anything about the automated prover*
- ➜ *Exploits local parallelism and remote servers*

DEMO: SLEDGEHAMMER

Sledgehammer Architecture

Fact Selection

Provers perform poorly if given 1000s of facts.

- ➜ *Best number of facts depends on the prover*
- ➜ *Need to take care which facts we give them*
- \rightarrow *Idea:* order facts by relevance, give top n to prover (n $=$ 250, 1000, . . .*)*
- ➜ *Meng & Paulson method: lightweight, symbol-based filter*
- ➜ *Machine learning method: look at previous proofs to get a probability of relevance*

From HOL to FOL

Source: higher-order, polymorphism, type classes Target: first-order, untyped or simply-typed

- ➜ *First-order:*
	- ➜ *SK combinators,* λ*-lifting*
	- ➜ *Explicit function application operator*
- ➜ *Encode types:*
	- ➜ *Monomorphise (generate multiple instances), or*
	- ➜ *Encode polymorphism on term level*

Reconstruction

We don't want to trust the external provers.

Need to check/reconstruct proof.

- ➜ *Re-find using Metis Usually fast and reliable (sometimes too slow)*
- ➜ *Rerun external prover for trusted replay Used for SMT. Re-runs prover each time!*
- ➜ *Recheck stored explicit external representation of proof Used for SMT, no need to re-run. Fragile.*
- ➜ *Recast into structured Isar proof Fast, not always readable.*

Judgement Day (up to 2013)

Evaluating Sledgehammer:

- ➜ *1240 goals out of 7 existing theories.*
- ➜ *How many can sledgehammer solve?*
- ➜ *2010: E, SPASS, Vampire (for 5-120s). 46%* $FSV \times 5s \approx V \times 120s$
- ➜ *2011: Add E-SInE, CVC2, Yices, Z3 (30s). Z*3 > *V*
- ➜ *2012: Better integration with SPASS. 64% SPASS best (small margin)*
- ➜ *2013: Machine learning for fact selection. 69% Improves a few percent across provers.*

Evaluation

Evaluation

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Evaluation

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Judgement Day (2016)

Fig. 15 Number of successful Sledgehammer invocations per prover on 1230 Judgment Day goals

 $919/1230 = 74\%$

Sledgehammer rules!

Example application:

- **→** *Large Isabelle/HOL repository of algebras for modelling imperative programs (Kleene Algebra, Hoare logic,* . . .*,* ≈ 1000 *lemmas)*
- ➜ *Intricate refinement and termination theorems*
- ➜ *Sledgehammer and Z3 automate algebraic proofs at textbook level.*

"The integration of ATP, SMT, and Nitpick is for our purposes very very helpful." – G. Struth

Theorem proving and testing

Testing can show only the presence of errors, but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:

- ➜ *Most lemma statements are wrong the first time.*
- ➜ *Theorem proving is expensive as a debugging technique.*

Find counter examples automatically!

Quickcheck

Lightweight validation by testing.

- ➜ *Motivated by Haskell's QuickCheck*
- ➜ *Uses Isabelle's code generator*
- ➜ *Fast*
- ➜ *Runs in background, proves you wrong as you type.*
	- ➜ *You have probably seen this already!*

Quickcheck

Covers a number of testing approaches:

- **→** *Random and exhaustive testing.*
- ➜ *Smart test data generators.*
- ➜ *Narrowing-based (symbolic) testing.*

Creates test data generators automatically.

DEMO: QUICKCHECK

Test generators for datatypes

Fast iteration in continuation-passing-style

datatype α list = Nil | Cons α (α list)

Test function:

test_α *list* $P = P$ Nil *andalso* test_α (λx. test_{α *list*} (λxs. P (Cons x xs)))

Test generators for predicates

```
distinct xs \implies distinct (remove 1 x xs)
```
Problem:

Exhaustive testing creates many useless test cases.

Solution:

Use definitions in precondition for smarter generator. Only generate cases where distinct xs is true.

test-distinct^α *list P = P Nil andalso test_α* (λ *x. test-distinct_α <i>list* (*if* $x \notin \lambda$ *s then* (λ *xs. P* (Cons *x xs*)) *else True))*

Use data flow analysis to figure out which variables must be computed and which generated.

Narrowing

Symbolic execution with demand-driven refinement

- ➜ *Test cases can contain variables*
- ➜ *If execution cannot proceed: instantiate with further symbolic terms*

Pays off if large search spaces can be discarded:

distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:

Lazy execution with outer refinement loop. Many re-computations, but fast.

Quickcheck Limitations

Only executable specifications!

- ➜ *No equality on functions with infinite domain*
- ➜ *No axiomatic specifications*

Nitpick

Finite model finder

- ➜ *Based on SAT via Kodkod (backend of Alloy prover)*
- ➜ *Soundly approximates infinite types*

Nitpick Successes

- ➜ *Algebraic methods*
- ➜ *C++ memory model*
- ➜ *Found soundness bugs in TPS and LEO-II*

Fan mail:

"Last night I got stuck on a goal I was sure was a theorem. After 5–10 minutes I gave Nitpick a try, and within a few secs it had found a splendid counterexample—despite the mess of locales and type classes in the context!"

DEMO: NITPICK

Automation Summary

- **→ Proof: Sledgehammer**
- **→ Counter examples: Quickcheck**
- **→ Counter examples: Nitpick**

ISAR (PART 1)

A LANGUAGE FOR STRUCTURED PROOFS

Motivation

Is this true: $(A \rightarrow B) = (B \vee \neg A)$?

Motivation

OK it's true. But WHY? This doesn't look like typical maths proofs.

apply scripts What about..

\rightarrow hard to read \rightarrow Elegance?
 \rightarrow hard to maintain \rightarrow Explaining

-
- \rightarrow hard to maintain \rightarrow Explaining deeper insights?

No explicit structure. Isar!

A typical Isar proof

proof assume *formula*⁰ **have** *formula*¹ **by** simp . . . **have** *formulaⁿ* **by** blast **show** *formula* $n+1$ **by** ... **qed**

proves *formula*⁰ \implies *formula*^{$n+1$}

(analogous to **assumes**/**shows** in lemma statements)

Isar core syntax

```
proof = proof [method] statement∗ qed
      | by method
method = (simp... | (blast...) | (rule...) | ...statement = fix variables
                                    \landassume proposition (\Longrightarrow)| [from name+] (have | show) proposition proof
           next (separates subgoals)
```
proposition = [name:] formula

proof [method] statement[∗] **qed**

```
lemma "[A; B] \implies A \wedge B"
proof (rule conjI)
   assume A: "A"
   from A show "A" by assumption
next
   assume B: "B"
   from B show "B" by assumption
qed
```
- **→ proof** (<method>) applies method to the stated goal
- **→ proof** applies a single rule that fits
- **→ proof -** does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!

lemma "[A ; B] \implies $A \land B$ " **proof** (rule conjI)

- ➜ **proof** (rule conjI) changes proof state to
	- 1. $[A; B] \implies A$
	- 2. $[A; B] \implies B$
- ➜ so we need 2 shows: **show** "*A*" and **show** "*B*"
- ➜ We are allowed to **assume** *A*, because *A* is in the assumptions of the proof state.

The Three Modes of Isar

➜ **[prove]**:

goal has been stated, proof needs to follow.

➜ **[state]**:

proof block has opened or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

➜ **[chain]**:

from statement has been made, goal statement needs to follow.

```
lemma "[A; B] \Rightarrow A \wedge B" [prove]
proof (rule conjI) [state]
   assume A: "A" [state]
   from A [chain] show "A" [prove] by assumption [state]
next [state] . . .
```


Have

Can be used to make intermediate steps.

Example:

```
lemma "(x:: nat) + 1 = 1 + x"
proof -
  have A: "x + 1 = Suc x" by simp
  have B: "1 + x = Suc x" by simp
  show "x + 1 = 1 + x" by (simp only: A B)
qed
```


Backward and Forward

Backward reasoning: . . . **have** "*A* ∧ *B*" **proof**

- ➜ **proof** picks an **intro** rule automatically
- ➜ conclusion of rule must unify with *A* ∧ *B*

Forward reasoning: . . .

assume AB: "*A* ∧ *B*" **from** AB **have** ". . ." **proof**

- ➜ now **proof** picks an **elim** rule automatically
- ➜ triggered by **from**
- \rightarrow first assumption of rule must unify with AB

General case: from $A_1 \ldots A_n$ have B proof

- \rightarrow first *n* assumptions of rule must unify with $A_1 \ldots A_n$
- ➜ conclusion of rule must unify with *R*

Fix and Obtain

fix $V_1 \ldots V_n$

Introduces new arbitrary but fixed variables (\sim parameters, \bigwedge)

obtain $v_1 \ldots v_n$ where $\langle \text{prop} \rangle \langle \text{proof} \rangle$

Introduces new variables together with property

44 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fancy Abbreviations

?thesis = the last enclosing goal statement

Moreover and Ultimately

```
have X_1: P_1 \ldots have P_1 \ldots have X_2: P_2 \ldots moreover h
.
.
.
have X_n: P_n ... moreover have P_n ... from X_1 \dots X_n show ... ultimately show ...
from X_1 \ldots X_n show ...
```

```
have P_2 ...
.
.
.
```
wastes brain power on names $X_1 \ldots X_n$

me¹

General Case Distinctions

```
show formula
proof -
  have P_1 \vee P_2 \vee P_3 <proof>
  moreover { \text{assume } P_1 ... have ?thesis <proof> }
  moreover { \text{assume } P_2 \ldots \text{ have }?thesis \langle \text{proof} \rangle }
  moreover { \text{assume } P_3 \ldots \text{ have }?thesis <proof> }
  ultimately show ?thesis by blast
qed
        { . . . } is a proof block similar to proof ... qed
```

```
\{ assume P_1 \ldots have P \leq \text{proof} > \}stands for P_1 \Longrightarrow P
```


Mixing proof styles

```
from . . .
have . . .
  apply - make incoming facts assumptions
  apply (. . . )
  .
.
  .
  apply (. . . )
  done
```


ISAR $(PART 2)$

DATATYPES IN ISAR

Datatype case distinction

```
proof (cases term)
  case Constructor<sub>1</sub>
   .
   .
   .
next
.
.
.
next
   case (Constructork
⃗x)
   · · · ⃗x · · ·
qed
```

```
case (Constructor<sub>i</sub> \vec{x}) ≡</sub>
fix ⃗x assume Constructori
: "term = Constructori
⃗x"
```


Structural induction for nat

```
show P n
proof (induct n)
  case 0 \equiv let ?case = P 0
   . . .
  show ?case
next
  \mathsf{case} \; (\mathsf{Suc} \; n) \equiv \mathsf{fix} \; n \; \mathsf{assume} \; \mathsf{Suc} \; P \; n. . . let ?case = P (Suc n)
  · · · n · · ·
  show ?case
qed
```


Structural induction: \implies and \wedge

```
show "∧ x. A n \Longrightarrow P n"
proof (induct n)
  show ?case
next
  case (Suc n) \equiv fix n and x
  show ?case
qed
```

```
case 0 \leq fix x assume 0: "A 0"
                         . . . let ?case = "P 0"
```
assume Suc: "∧ *x*. *A n* \implies *P n*" · · · *n* · · · "*A* (Suc *n*)" let $?case = "P (Suc n)"$

DEMO: DATATYPES IN ISAR

CALCULATIONAL REASONING

The Goal

$$
Prove: \limits_{X \cdot X^{-1}} = 1
$$

[−]¹ = 1 using: assoc: (*x* · *y*) · *z* = *x* · (*y* · *z*) $left_inv:$ $x^{-1} \cdot x = 1$ left_one: $1 \cdot x = x$

The Goal

Prove:
\n
$$
x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})
$$
\n
$$
\dots = 1 \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1}
$$
\n
$$
\dots = 1
$$

$$
\begin{array}{ll}\n\text{assoc:} & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\
\text{left_inv:} & x^{-1} \cdot x = 1 \\
\text{left_one:} & 1 \cdot x = x\n\end{array}
$$

Can we do this in Isabelle?

- **→** Simplifier: too eager
- **→** Manual: difficult in apply style
- \rightarrow Isar: with the methods we know, too verbose

Chains of equations

The Problem

a = *b* . . . = *c* . . . = *d* shows $a = d$ by transitivity of $=$

Each step usually nontrivial (requires own subproof) **Solution in Isar:**

- ➜ Keywords **also** and **finally** to delimit steps
- **→ ...** : predefined schematic term variable, refers to right hand side of last expression
- \rightarrow Automatic use of transitivity rules to connect steps

also/finally

have $n_{0} = t_{1}$ " [proof] calculation register **also** ${}^{n}t_{0} = t_{1}$ " **have** " $\ldots = t_2$ " [proof] **also** ${}^{n}t_{0} = t_{2}{}^{n}$ **also** " $t_0 = t_{n-1}$ " **have** " $\cdots = t_n$ " [proof] **finally** $t_0 = t_n$ **show** P — 'finally' pipes fact " $t_0 = t_n$ " into the proof

More about also

- \rightarrow Works for all combinations of $=$, \le and \le .
- \rightarrow Uses all rules declared as [trans].
- → To view all combinations: print_trans_rules

Designing [trans] Rules

have = $\mathbb{I}_1 \odot \mathbb{I}_1$ " [proof] **also have** ". . . ⊙ r₂" [proof] **also**

Anatomy of a [trans] rule:

- \rightarrow Usual form: plain transitivity $\llbracket h \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow h \odot r_2$
- \rightarrow More general form: $[P I_1 I_1; Q I_1 I_2; A] \rightarrow C I_1 I_2$

Examples:

- \rightarrow pure transitivity: $[a = b; b = c] \rightarrow a = c$
- \rightarrow mixed: $[a < b; b < c] \Rightarrow a < c$
- \rightarrow substitution: $\llbracket P \text{ a}; a = b \rrbracket \Longrightarrow P \text{ b}$
- \rightarrow antisymmetry: $[a < b; b < a] \Longrightarrow$ False
- → monotonicity: $[a = f b; b < c; \wedge x \ y; x < y \Longrightarrow f x < f y] \Longrightarrow a < f c$

 O_{Tr}

