
COMP4161
Advanced Topics in Software

Verification

fun

Thomas Sewell, Miki Tanaka, Rob Sison

T3/2024

Content

➜ Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

➜ Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c]

aa1 due; ba2 due; ca3 due

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Recursion

The Choice

➜ Limited expressiveness, automatic termination
• primrec

➜ High expressiveness, termination proof may fail
• fun

➜ High expressiveness, tweakable, termination proof manual
• function

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Recursion

The Choice

➜ Limited expressiveness, automatic termination
• primrec

➜ High expressiveness, termination proof may fail
• fun

➜ High expressiveness, tweakable, termination proof manual
• function

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

fun — examples

fun sep :: ”’a ⇒ ’a list ⇒ ’a list”
where

”sep a (x # y # zs) = x # a # sep a (y # zs)” |
”sep a xs = xs”

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

fun — examples

fun sep :: ”’a ⇒ ’a list ⇒ ’a list”
where

”sep a (x # y # zs) = x # a # sep a (y # zs)” |
”sep a xs = xs”

fun ack :: ”nat ⇒ nat ⇒ nat”
where

”ack 0 n = Suc n” |
”ack (Suc m) 0 = ack m 1” |
”ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

fun

➜ Much more permissive than primrec:
• pattern matching in all parameters
• nested, linear constructor patterns
• reads equations sequentially like in Haskell (top to bottom)
• proves termination automatically in many cases

(tries lexicographic order and datatype size)

➜ Generates more theorems than primrec

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

fun

➜ Much more permissive than primrec:
• pattern matching in all parameters
• nested, linear constructor patterns
• reads equations sequentially like in Haskell (top to bottom)
• proves termination automatically in many cases

(tries lexicographic order and datatype size)

➜ Generates more theorems than primrec

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

fun

➜ Much more permissive than primrec:
• pattern matching in all parameters
• nested, linear constructor patterns
• reads equations sequentially like in Haskell (top to bottom)
• proves termination automatically in many cases

(tries lexicographic order and datatype size)

➜ Generates more theorems than primrec

➜ May fail to prove termination:
• use function instead

◦ function(sequential) preserves sequential behaviour
• allows you to prove termination manually

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

Why Termination?

Why does it matter that our recursive function definitions terminate?

• Because otherwise we might introduce unsoundness.
• We talked about this when we introduced primrec.

MINI-DEMO

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Why Termination?

Why does it matter that our recursive function definitions terminate?
• Because otherwise we might introduce unsoundness.
• We talked about this when we introduced primrec.

MINI-DEMO

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Why Termination?

Why does it matter that our recursive function definitions terminate?
• Because otherwise we might introduce unsoundness.
• We talked about this when we introduced primrec.

MINI-DEMO

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Conservative Extensions

These are some definitional mechanisms of Isabelle/HOL:
• definition
• primrec
• inductive

• datatype (sort of)
• fun
• function

They all add a new constant (or constants) and their defining facts.

They all try to make a conservative extension of the logic:
• new symbols, thus new type-correct statements
• some of these new statements are provable
• previously type-correct statements should not change meaning

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

A Dramatic Aside

Ondřej Kunčar and Andrei Popescu
A Consistent Foundation for Isabelle/HOL
In ITP 2015, Nanjing

https://andreipopescu.uk/pdf/ITP2015.pdf

• discusses a (debatable) proof of False in Isabelle 2014.

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

https://andreipopescu.uk/pdf/ITP2015.pdf

Terminating Functions in the Intersection

Computer
Science Mathematics

Terminating
Recursive
Functions

If a recursive computational function f :: α ⇒ β terminates, then its
type in the logic can be f :: α ⇒ β.

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Termination as Induction

Termination (of a recursive scheme) is ≈ induction.

➜ Each fun definition induces an induction principle

➜ For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs
➜ Example sep.induct:

[[
∧

a. P a [];∧
a w . P a [w]∧
a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Termination as Induction

Termination (of a recursive scheme) is ≈ induction.

➜ Each fun definition induces an induction principle
➜ For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs

➜ Example sep.induct:
[[
∧

a. P a [];∧
a w . P a [w]∧
a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Termination as Induction

Termination (of a recursive scheme) is ≈ induction.

➜ Each fun definition induces an induction principle
➜ For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs
➜ Example sep.induct:

[[
∧

a. P a [];∧
a w . P a [w]∧
a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Termination

Isabelle tries to prove termination automatically
➜ For most functions this works with a lexicographic termination relation.

➜ Sometimes not⇒ error message with unsolved subgoal
➜ You can prove termination separately.

function (sequential) quicksort where
quicksort [] = [] |
quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]
by pat completeness auto

termination
by (relation “measure length”) (auto simp: less Suc eq le)

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Termination

Isabelle tries to prove termination automatically
➜ For most functions this works with a lexicographic termination relation.
➜ Sometimes not

⇒ error message with unsolved subgoal
➜ You can prove termination separately.

function (sequential) quicksort where
quicksort [] = [] |
quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]
by pat completeness auto

termination
by (relation “measure length”) (auto simp: less Suc eq le)

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Termination

Isabelle tries to prove termination automatically
➜ For most functions this works with a lexicographic termination relation.
➜ Sometimes not⇒ error message with unsolved subgoal

➜ You can prove termination separately.

function (sequential) quicksort where
quicksort [] = [] |
quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]
by pat completeness auto

termination
by (relation “measure length”) (auto simp: less Suc eq le)

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Termination

Isabelle tries to prove termination automatically
➜ For most functions this works with a lexicographic termination relation.
➜ Sometimes not⇒ error message with unsolved subgoal
➜ You can prove termination separately.

function (sequential) quicksort where
quicksort [] = [] |
quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]
by pat completeness auto

termination
by (relation “measure length”) (auto simp: less Suc eq le)

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

How does fun/function work? Option 1.

You may remember the previous explanation of how the rec list
constant (used by primrec) is defined via a relation.

For fun f :: α ⇒ β, first define frel :: (α× β) set.
➜ extract recursion scheme for equations in f
➜ define graph frel inductively, encoding recursion scheme

• f (Suc x) = f x ∗ 2 7→ (frelxv −→ frel(Suc x)(v ∗ 2))
➜ prove totality (= termination)

• recall that inductive relations are the least fixpoint
• nonterminating recursion chains are not in the set

➜ prove uniqueness (automatic)
➜ derive f and original equations from ϵ choice and frel

➜ export induction scheme from frel

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How does fun/function work? Option 1.

You may remember the previous explanation of how the rec list
constant (used by primrec) is defined via a relation.

For fun f :: α ⇒ β, first define frel :: (α× β) set.
➜ extract recursion scheme for equations in f
➜ define graph frel inductively, encoding recursion scheme

• f (Suc x) = f x ∗ 2 7→ (frelxv −→ frel(Suc x)(v ∗ 2))
➜ prove totality (= termination)

• recall that inductive relations are the least fixpoint
• nonterminating recursion chains are not in the set

➜ prove uniqueness (automatic)
➜ derive f and original equations from ϵ choice and frel

➜ export induction scheme from frel

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How does fun/function work? Option 2.

function can separate and defer termination proof:
➜ skip proof of totality

➜ instead derive equations of the form: x ∈ f dom⇒ f x = . . .

➜ similarly, conditional induction principle
➜ f dom = acc f rel
➜ acc = accessible part of f rel
➜ the part that can be reached in finitely many steps
➜ termination = ∀x . x ∈ f dom
➜ still have conditional equations for partial functions
➜ note that for f :: α⇒ β, this f rel :: (α× α) set.

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How does fun/function work? Option 2.

function can separate and defer termination proof:
➜ skip proof of totality
➜ instead derive equations of the form: x ∈ f dom⇒ f x = . . .

➜ similarly, conditional induction principle

➜ f dom = acc f rel
➜ acc = accessible part of f rel
➜ the part that can be reached in finitely many steps
➜ termination = ∀x . x ∈ f dom
➜ still have conditional equations for partial functions
➜ note that for f :: α⇒ β, this f rel :: (α× α) set.

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How does fun/function work? Option 2.

function can separate and defer termination proof:
➜ skip proof of totality
➜ instead derive equations of the form: x ∈ f dom⇒ f x = . . .

➜ similarly, conditional induction principle
➜ f dom = acc f rel
➜ acc = accessible part of f rel
➜ the part that can be reached in finitely many steps

➜ termination = ∀x . x ∈ f dom
➜ still have conditional equations for partial functions
➜ note that for f :: α⇒ β, this f rel :: (α× α) set.

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How does fun/function work? Option 2.

function can separate and defer termination proof:
➜ skip proof of totality
➜ instead derive equations of the form: x ∈ f dom⇒ f x = . . .

➜ similarly, conditional induction principle
➜ f dom = acc f rel
➜ acc = accessible part of f rel
➜ the part that can be reached in finitely many steps
➜ termination = ∀x . x ∈ f dom
➜ still have conditional equations for partial functions

➜ note that for f :: α⇒ β, this f rel :: (α× α) set.

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How does fun/function work? Option 2.

function can separate and defer termination proof:
➜ skip proof of totality
➜ instead derive equations of the form: x ∈ f dom⇒ f x = . . .

➜ similarly, conditional induction principle
➜ f dom = acc f rel
➜ acc = accessible part of f rel
➜ the part that can be reached in finitely many steps
➜ termination = ∀x . x ∈ f dom
➜ still have conditional equations for partial functions
➜ note that for f :: α⇒ β, this f rel :: (α× α) set.

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

Proving Termination

termination fun name sets up termination goal
∀x . x ∈ fun name dom

Three main proof methods:

➜ lexicographic order (default tried by fun)
➜ size change (automated translation to simpler size-change graph1)
➜ relation R (manual proof via well-founded relation)

1

C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Proving Termination

termination fun name sets up termination goal
∀x . x ∈ fun name dom

Three main proof methods:
➜ lexicographic order (default tried by fun)

➜ size change (automated translation to simpler size-change graph1)
➜ relation R (manual proof via well-founded relation)

1

C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Proving Termination

termination fun name sets up termination goal
∀x . x ∈ fun name dom

Three main proof methods:
➜ lexicographic order (default tried by fun)
➜ size change (automated translation to simpler size-change graph1)

➜ relation R (manual proof via well-founded relation)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Proving Termination

termination fun name sets up termination goal
∀x . x ∈ fun name dom

Three main proof methods:
➜ lexicographic order (default tried by fun)
➜ size change (automated translation to simpler size-change graph1)
➜ relation R (manual proof via well-founded relation)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf(<r) ≡ ∀P. (∀x . (∀y <r x .P y) −→ P x) −→ (∀x . P x)

Well founded induction rule:
wf(<r)

∧
x . (∀y <r x . P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
the accessible part is everything, or (equivalent):
every nonempty set has a minimal element wrt <r
min (<r) Q x ≡ ∀y ∈ Q. y ̸<r x
wf (<r) = (∀Q ̸= {}. ∃m ∈ Q. min r Q m)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf(<r) ≡ ∀P. (∀x . (∀y <r x .P y) −→ P x) −→ (∀x . P x)

Well founded induction rule:
wf(<r)

∧
x . (∀y <r x . P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
the accessible part is everything, or (equivalent):
every nonempty set has a minimal element wrt <r
min (<r) Q x ≡ ∀y ∈ Q. y ̸<r x
wf (<r) = (∀Q ̸= {}. ∃m ∈ Q. min r Q m)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf(<r) ≡ ∀P. (∀x . (∀y <r x .P y) −→ P x) −→ (∀x . P x)

Well founded induction rule:
wf(<r)

∧
x . (∀y <r x . P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
the accessible part is everything, or (equivalent):
every nonempty set has a minimal element wrt <r
min (<r) Q x ≡ ∀y ∈ Q. y ̸<r x
wf (<r) = (∀Q ̸= {}. ∃m ∈ Q. min r Q m)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Well Founded Orders: Examples

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded
➜ x <r y = x dvd y ∧ x ̸= 1 on IN is well founded

the minimal elements are the prime numbers
➜ (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are well founded
➜ A <r B = A ⊂ B ∧ finite B is well founded
➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Well Founded Orders: Examples

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x ̸= 1 on IN is well founded
the minimal elements are the prime numbers

➜ (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded
if <1 and <2 are well founded

➜ A <r B = A ⊂ B ∧ finite B is well founded
➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Well Founded Orders: Examples

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded
➜ x <r y = x dvd y ∧ x ̸= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded
if <1 and <2 are well founded

➜ A <r B = A ⊂ B ∧ finite B is well founded
➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Well Founded Orders: Examples

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded
➜ x <r y = x dvd y ∧ x ̸= 1 on IN is well founded

the minimal elements are the prime numbers
➜ (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are well founded

➜ A <r B = A ⊂ B ∧ finite B is well founded
➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Well Founded Orders: Examples

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded
➜ x <r y = x dvd y ∧ x ̸= 1 on IN is well founded

the minimal elements are the prime numbers
➜ (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are well founded
➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Well Founded Orders: Examples

➜ < on IN is well founded
well founded induction = complete induction

➜ > and ≤ on IN are not well founded
➜ x <r y = x dvd y ∧ x ̸= 1 on IN is well founded

the minimal elements are the prime numbers
➜ (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are well founded
➜ A <r B = A ⊂ B ∧ finite B is well founded
➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?

Not fixed anymore as in primrec.

Examples:
➜ fun fib where

fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n
➜ fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x ̸= 0 =⇒ x ; x - 1

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
➜ fun fib where

fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n
➜ fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x ̸= 0 =⇒ x ; x - 1

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
➜ fun fib where

fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n

➜ fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x ̸= 0 =⇒ x ; x - 1

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
➜ fun fib where

fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n
➜ fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x ̸= 0 =⇒ x ; x - 1

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
➜ fun fib where

fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n
➜ fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x ̸= 0 =⇒ x ; x - 1

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

Higher Order:
➜ datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a⇒ ’a)⇒ ’a tree⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion: x ∈ set l =⇒ (fn, Branch l) ; (fn, x)

How does Isabelle extract context information for the call?

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

Higher Order:
➜ datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a⇒ ’a)⇒ ’a tree⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion: x ∈ set l =⇒ (fn, Branch l) ; (fn, x)

How does Isabelle extract context information for the call?

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

Higher Order:
➜ datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a⇒ ’a)⇒ ’a tree⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion: x ∈ set l =⇒ (fn, Branch l) ; (fn, x)

How does Isabelle extract context information for the call?

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

Extracting context for equations

⇒
Congruence Rules!

Recall rule if cong:

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.
In fun def: for recursion in x, use b as context, for y use ¬b.

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

Extracting context for equations
⇒

Congruence Rules!

Recall rule if cong:

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.
In fun def: for recursion in x, use b as context, for y use ¬b.

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

Extracting context for equations
⇒

Congruence Rules!

Recall rule if cong:

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.

In fun def: for recursion in x, use b as context, for y use ¬b.

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Extracting the Recursion Scheme

Extracting context for equations
⇒

Congruence Rules!

Recall rule if cong:

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.
In fun def: for recursion in x, use b as context, for y use ¬b.

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]

(if cong already added by default)

Another example (higher-order):
[| xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x |] =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]
(if cong already added by default)

Another example (higher-order):
[| xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x |] =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]
(if cong already added by default)

Another example (higher-order):
[| xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x |] =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

Further Reading

Alexander Krauss,
Automating Recursive Definitions and Termination Proofs
in Higher-Order Logic.
PhD thesis, TU Munich, 2009.

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

Ondřej Kunčar and Andrei Popescu
A Consistent Foundation for Isabelle/HOL
In ITP 2015

https://andreipopescu.uk/pdf/ITP2015.pdf

Rob Arthan
HOL constant definition done right
In ITP 2014

25 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf
https://andreipopescu.uk/pdf/ITP2015.pdf

We have seen today ...

➜ General recursion with fun/function
➜ Induction over recursive functions
➜ How fun works
➜ Termination, partial functions, congruence rules

26 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

