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General Recursion

The Choice




General Recursion

The Choice

=» Limited expressiveness, automatic termination
® primrec

=» High expressiveness, termination proof may fail
e fun

=» High expressiveness, tweakable, termination proof manual
e function
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fun — examples

fun sep :: "a=alist = ’alist’
where

"sepa (x#y#zs)=x#a#sepal(y#zs)|
"sep a xs = xs”
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fun — examples

fun sep :: "a=alist = ’alist’

where
"sepa (x#y#zs)=x#a#sepal(y#zs)|
"sep a xs = xs”

fun ack :: nat = nat = nat”
where
"ack O n = Suc n” |
"ack (Sucm)0=ackm1”|
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”
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fun

=» Much more permissive than primrec:

pattern matching in all parameters

nested, linear constructor patterns

reads equations sequentially like in Haskell (top to bottom)
proves termination automatically in many cases

(tries lexicographic order and datatype size)
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pattern matching in all parameters

nested, linear constructor patterns

reads equations sequentially like in Haskell (top to bottom)
proves termination automatically in many cases

(tries lexicographic order and datatype size)

=» Generates more theorems than primrec
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fun

=» Much more permissive than primrec:

pattern matching in all parameters

nested, linear constructor patterns

reads equations sequentially like in Haskell (top to bottom)
proves termination automatically in many cases

(tries lexicographic order and datatype size)

=» Generates more theorems than primrec

=» May fail to prove termination:
e use function instead
o function(sequential) preserves sequential behaviour
e allows you to prove termination manually
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DEMO



Why Termination?

Why does it matter that our recursive function definitions terminate?
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Why Termination?

Why does it matter that our recursive function definitions terminate?
e Because otherwise we might introduce unsoundness.
¢ We talked about this when we introduced primrec.
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Why Termination?

Why does it matter that our recursive function definitions terminate?
¢ Because otherwise we might introduce unsoundness.
¢ We talked about this when we introduced primrec.

e
MINI-DEMO
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Conservative Extensions

These are some definitional mechanisms of Isabelle/HOL:

¢ definition ¢ datatype (sort of)
e primrec e fun
¢ inductive ¢ function

They all add a new constant (or constants) and their defining facts.

They all try to make a conservative extension of the logic:
¢ new symbols, thus new type-correct statements
e some of these new statements are provable
e previously type-correct statements should not change meaning

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
Sl



A Dramatic Aside

Ondrej Kuncar and Andrei Popescu
A Consistent Foundation for Isabelle/HOL
In ITP 2015, Nanjing

https://andreipopescu.uk/pdf/ITP2015.pdf

¢ discusses a (debatable) proof of False in Isabelle 2014.
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https://andreipopescu.uk/pdf/ITP2015.pdf

Terminating Functions in the Intersection

Computer
Science

Terminating
Recursive
Functions

If a recursive computational function f :: « = 8 terminates, then its
type in the logic can be f :: a = 5.
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Termination as Induction

Termination (of a recursive scheme) is = induction.

=» Each fun definition induces an induction principle

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License




Termination as Induction

Termination (of a recursive scheme) is = induction.

=» Each fun definition induces an induction principle
=» For each equation:

show P holds for Ihs, provided P holds for each recursive call on rhs
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Termination as Induction

Termination (of a recursive scheme) is = induction.

=» Each fun definition induces an induction principle
=» For each equation:

show P holds for Ihs, provided P holds for each recursive call on rhs
=» Example sep.induct:

[Aa Pall
Naw.Palw]

Naxyzs. Pa(y#zs) = P a(x#y#zs),
]=Paxs
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Termination

Isabelle tries to prove termination automatically
=» For most functions this works with a lexicographic termination relation.
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Termination

Isabelle tries to prove termination automatically

=» For most functions this works with a lexicographic termination relation.
=» Sometimes not
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Termination

Isabelle tries to prove termination automatically

=» For most functions this works with a lexicographic termination relation.
=» Sometimes not = error message with unsolved subgoal
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Termination

Isabelle tries to prove termination automatically
=» For most functions this works with a lexicographic termination relation.
=» Sometimes not = error message with unsolved subgoal
=» You can prove termination separately.

function (sequential) quicksort where
quicksort [1 = |

quicksort (x#xs) = quicksort [y < xs.y < x]@[x]@ quicksort [y < xs.x < y]
by pat_completeness auto

termination
by (relation “measure length”) (auto simp: less_Suc_eq_le)
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How does fun/function work? Option 1.

You may remember the previous explanation of how the rec_list
constant (used by primrec) is defined via a relation.

For fun f :: o = 3, first define fy :: (o x f8) set.
=» extract recursion scheme for equations in f
=» define graph f, inductively, encoding recursion scheme
e f(Sucx)="Fx*2r (frexv —> fre(Suc x)(v x 2))
=» prove totality (= termination)

=» prove uniqueness (automatic)
=» derive f and original equations from e choice and f
=» export induction scheme from f
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How does fun/function work? Option 1.

You may remember the previous explanation of how the rec_list
constant (used by primrec) is defined via a relation.

For fun f :: o = 3, first define fy :: (o x f8) set.

=» extract recursion scheme for equations in f

=» define graph f, inductively, encoding recursion scheme
e f(Sucx)="Fx*2r (frexv —> fre(Suc x)(v x 2))

=» prove totality (= termination)
e recall that inductive relations are the least fixpoint
e nonterminating recursion chains are not in the set

=» prove uniqueness (automatic)

=» derive f and original equations from e choice and fg

=» export induction scheme from f
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How does fun/function work? Option 2.

function can separate and defer termination proof:
=» skip proof of totality
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How does fun/function work? Option 2.

function can separate and defer termination proof:
=» skip proof of totality

=» instead derive equations of the form: x € f.dom=fx = ...

=» similarly, conditional induction principle
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How does fun/function work? Option 2.

function can separate and defer termination proof:

skip proof of totality

instead derive equations of the form: x € f.dom = fx = ...
similarly, conditional induction principle

f_dom = acc f_rel

acc = accessible part of f_rel

the part that can be reached in finitely many steps

L T
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How does fun/function work? Option 2.

function can separate and defer termination proof:
skip proof of totality

similarly, conditional induction principle

f_dom = acc f_rel

acc = accessible part of f_rel

the part that can be reached in finitely many steps
termination = Vx. x € f_dom

still have conditional equations for partial functions

dd il
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instead derive equations of the form: x € f.dom = fx = ...



How does fun/function work? Option 2.

function can separate and defer termination proof:
skip proof of totality

similarly, conditional induction principle

f_dom = acc f_rel

acc = accessible part of f_rel

the part that can be reached in finitely many steps
termination = Vx. x € f_dom

still have conditional equations for partial functions
note that for f :: a« = 3, this f_rel :: (o x ) set.

ddi il
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instead derive equations of the form: x € f.dom = fx = ...
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Proving Termination

termination fun_name sets up termination goal
Vx. x € fun_name_dom

Three main proof methods:
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Proving Termination
termination fun_name sets up termination goal
Vx. x € fun_name_dom

Three main proof methods:
=>» lexicographic_order (default tried by fun)

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License




Proving Termination

termination fun_name sets up termination goal
Vx. x € fun_name_dom

Three main proof methods:

=>» lexicographic_order (default tried by fun)
= size_change (automated translation to simpler size-change graph')

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.
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Proving Termination

termination fun_name sets up termination goal
Vx. x € fun_name_dom

Three main proof methods:
=>» lexicographic_order (default tried by fun)
= size_change (automated translation to simpler size-change graph')
=» relation R (manual proof via well-founded relation)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW



Well Founded Orders

Definition
<, is well founded if well founded induction holds
wf(<,) = VP. (Vx. (Vy <, x.P y) — P x) — (¥x. P x)
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Well Founded Orders

Definition
<, is well founded if well founded induction holds
wf(<,) = VP. (Vx. (Vy <, x.P y) — P x) — (¥x. P x)

Well founded induction rule:
wi(<,) Ax. (VW< x.Py)= Px
Pa
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Well Founded Orders

Definition
<, is well founded if well founded induction holds
wf(<,) = VP. (Vx. (Vy <, x.P y) — P x) — (¥x. P x)

Well founded induction rule:
wi(<,) Ax. (VW< x.Py)= Px
Pa

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
the accessible part is everything, or (equivalent):
every nonempty set has a minimal element wrt <,
min (<,) Q x VyeQ.y£rx
wf (<) (VQ # {}. 3me Q. minr Q m)
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Well Founded Orders: Examples

=» < on N is well founded
well founded induction = complete induction
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Well Founded Orders: Examples

=» < on N is well founded
well founded induction = complete induction
=» > and < on IN are not well founded
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Well Founded Orders: Examples

=» < on N is well founded
well founded induction = complete induction

-» > and < on IN are not well founded
= x<,y=xdvd y Ax#1onN is well founded
the minimal elements are the prime numbers
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Well Founded Orders: Examples

=» < on N is well founded

well founded induction = complete induction

> and < on IN are not well founded

X <ry=xdvd y Ax#1onN is well founded

the minimal elements are the prime numbers

= (a,b) <r (x,y)=a<yxVvVa=xAb<syiswell founded
if <1 and <, are well founded

+d

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License




Well Founded Orders: Examples

=» < on N is well founded

well founded induction = complete induction

> and < on IN are not well founded

X <ry=xdvd y Ax#1onN is well founded

the minimal elements are the prime numbers

= (a,b) <r (x,y)=a<yxVvVa=xAb<syiswell founded
if <1 and <, are well founded

=> A<, B=AC B Afinite Bis well founded

+d
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Well Founded Orders: Examples

=» < on N is well founded

well founded induction = complete induction

> and < on IN are not well founded

X <ry=xdvd y Ax#1onN is well founded

the minimal elements are the prime numbers

= (a,b) <r (x,y)=a<yxVvVa=xAb<syiswell founded
if <1 and <, are well founded

A <, B= A C B Afinite B is well founded

C and C in general are not well founded

+d

+d

More about well founded relations: Term Rewriting and All That
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Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
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Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
=» fun fib where
flo0=1|
fio (Suc0) =1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)
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Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

=» fun fib where
fib0=1]|
fib (Suc 0) =1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ~ n, Suc (Suc n) ~» Suc n
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Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
=>» fun fib where
fib0=1]|
fib (Suc 0) =1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)
Recursion: Suc (Suc n) ~ n, Suc (Suc n) ~» Suc n
= funfwherefx=(fx=0then0Oelsef(x-1)*2)
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Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
=» fun fib where
flo0=1|
fio (Suc0) =1 |

fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ~ n, Suc (Suc n) ~» Suc n
= funfwherefx=(fx=0then0Oelsef(x-1)*2)

Recursion: x 20 = x~> x - 1
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Extracting the Recursion Scheme

Higher Order:
-» datatype 'a tree = Leaf 'a | Branch ’a tree list

fun treemap :: (a = ’a) = ’a tree = ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch I) = Branch (map (treemap fn) I)
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Extracting the Recursion Scheme

Higher Order:
-» datatype 'a tree = Leaf 'a | Branch ’a tree list

fun treemap :: (a = ’a) = ’a tree = ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch I) = Branch (map (treemap fn) I)

Recursion: x € set| = (fn, Branch I) ~ (fn, x)
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Extracting the Recursion Scheme

Higher Order:
-» datatype 'a tree = Leaf 'a | Branch ’a tree list

fun treemap :: (a = ’a) = ’a tree = ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch I) = Branch (map (treemap fn) I)

Recursion: x € set| = (fn, Branch I) ~ (fn, x)

How does Isabelle extract context information for the call?
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Extracting the Recursion Scheme

Extracting context for equations
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Extracting the Recursion Scheme

Extracting context for equations
=
Congruence Rules!
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Extracting the Recursion Scheme

Extracting context for equations
=
Congruence Rules!

Recall rule if_cong:

[b=c;c=x=Uu;-c=y=V|]=
(if b then x else y) = (if ¢ then u else v)

Read: for transforming x, use b as context information, for y use —b.

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License




Extracting the Recursion Scheme

Extracting context for equations
=
Congruence Rules!

Recall rule if_cong:
[b=cic=x=Uuj"c=y=V|]=

(if b then x else y) = (if ¢ then u else v)

Read: for transforming x, use b as context information, for y use —b.
In fun_def: for recursion in x, use b as context, for y use —b.
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Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
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Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):
[[xs=ys; AX.x e setys = fx=gx||= mapfxs=mapgys
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Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):
[[xs=ys; AX.x e setys = fx=gx||= mapfxs=mapgys

Read: for recursive calls in f, f is called with elements of xs
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Further Reading

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs
in Higher-Order Logic.

PhD thesis, TU Munich, 2009.

https://www2l.in.tum.de/~krauss/papers/krauss-thesis.pdf
Ondrej Kunéar and Andrei Popescu

A Consistent Foundation for Isabelle/HOL
InITP 2015

https://andreipopescu.uk/pdf/ITP2015.pdf
Rob Arthan

HOL constant definition done right
In ITP 2014
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https://andreipopescu.uk/pdf/ITP2015.pdf

We have seen today ...

=» General recursion with fun/function

=» Induction over recursive functions

=» How fun works

=» Termination, partial functions, congruence rules
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