COMP4161 Advanced Topics in Software Verification

fun

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

→ Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
C verification	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

General Recursion

The Choice

General Recursion

The Choice

- → Limited expressiveness, automatic termination
 - primrec
- → High expressiveness, termination proof may fail
 - fun
- → High expressiveness, tweakable, termination proof manual
 - function

fun — examples

```
fun sep :: "'a \Rightarrow 'a list \Rightarrow 'a list" where "sep a (x # y # zs) = x # a # sep a (y # zs)" | "sep a xs = xs"
```

fun — examples

```
fun sep :: "'a ⇒ 'a list ⇒ 'a list"
where
    "sep a (x # y # zs) = x # a # sep a (y # zs)" |
    "sep a xs = xs"

fun ack :: "nat ⇒ nat ⇒ nat"
where
    "ack 0 n = Suc n" |
    "ack (Suc m) 0 = ack m 1" |
    "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
```

fun

- → Much more permissive than primrec:
 - pattern matching in all parameters
 - nested, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order and datatype size)

fun

- → Much more permissive than **primrec**:
 - pattern matching in all parameters
 - · nested, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order and datatype size)
- → Generates more theorems than **primrec**

fun

- → Much more permissive than primrec:
 - pattern matching in all parameters
 - nested, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order and datatype size)
- → Generates more theorems than primrec
- → May fail to prove termination:
 - use function instead
 - function(sequential) preserves sequential behaviour
 - allows you to prove termination manually

DEMO

Why Termination?

Why does it matter that our recursive function definitions terminate?

Why Termination?

Why does it matter that our recursive function definitions terminate?

- Because otherwise we might introduce unsoundness.
- We talked about this when we introduced primrec.

Why Termination?

Why does it matter that our recursive function definitions terminate?

- Because otherwise we might introduce unsoundness.
- We talked about this when we introduced primrec.

MINI-DEMO

Conservative Extensions

These are some **definitional mechanisms** of Isabelle/HOL:

- definition
- primrec
- inductive

- datatype (sort of)
- fun
- function

They all add a new constant (or constants) and their defining facts.

They all try to make a **conservative extension** of the logic:

- new symbols, thus new type-correct statements
- some of these new statements are provable
- previously type-correct statements should not change meaning

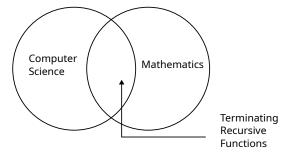
A Dramatic Aside

Ondřej Kunčar and Andrei Popescu A Consistent Foundation for Isabelle/HOL In ITP 2015, Nanjing

https://andreipopescu.uk/pdf/ITP2015.pdf

discusses a (debatable) proof of False in Isabelle 2014.

Terminating Functions in the Intersection



If a recursive computational function $f :: \alpha \Rightarrow \beta$ terminates, then its type in the logic can be $f :: \alpha \Rightarrow \beta$.

Termination as Induction

Termination (of a recursive scheme) is \approx induction.

→ Each fun definition induces an induction principle

Termination as Induction

Termination (of a recursive scheme) is \approx induction.

- → Each fun definition induces an induction principle
- → For each equation: show P holds for lhs, provided P holds for each recursive call on rhs

Termination as Induction

Termination (of a recursive scheme) is \approx induction.

- → Each fun definition induces an induction principle
- → For each equation: show P holds for lhs, provided P holds for each recursive call on rhs
- → Example sep.induct:

Isabelle tries to prove termination automatically

→ For most functions this works with a lexicographic termination relation.

Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- → Sometimes not

Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- → Sometimes not ⇒ error message with unsolved subgoal

Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- → Sometimes not ⇒ error message with unsolved subgoal
- → You can prove termination separately.

```
function (sequential) quicksort where quicksort [] = [] | quicksort (x \# xs) = quicksort [y \leftarrow xs.y \le x]@[x]@ quicksort [y \leftarrow xs.x < y] by pat_completeness auto
```

termination

by (relation "measure length") (auto simp: less_Suc_eq_le)

DEMO

You may remember the previous explanation of how the **rec_list** constant (used by **primrec**) is defined via a relation.

For **fun** $f :: \alpha \Rightarrow \beta$, first define $f_{rel} :: (\alpha \times \beta)$ set.

- → extract recursion scheme for equations in f
- \rightarrow define graph f_{rel} inductively, encoding recursion scheme

•
$$f(\operatorname{Suc} x) = f x * 2 \mapsto (f_{rel}xv \longrightarrow f_{rel}(\operatorname{Suc} x)(v * 2))$$

→ prove totality (= termination)

- → prove uniqueness (automatic)
- \rightarrow derive f and original equations from ϵ choice and f_{rel}
- → export induction scheme from f_{rel}

You may remember the previous explanation of how the **rec_list** constant (used by **primrec**) is defined via a relation.

For **fun** $f :: \alpha \Rightarrow \beta$, first define $f_{rel} :: (\alpha \times \beta)$ set.

- → extract recursion scheme for equations in f
- \rightarrow define graph f_{rel} inductively, encoding recursion scheme

•
$$f(Suc x) = f x * 2 \mapsto (f_{rel}xv \longrightarrow f_{rel}(Suc x)(v * 2))$$

- → prove totality (= termination)
 - recall that inductive relations are the least fixpoint
 - nonterminating recursion chains are not in the set
- → prove uniqueness (automatic)
- \rightarrow derive f and original equations from ϵ choice and f_{rel}
- → export induction scheme from f_{rel}

function can separate and defer termination proof:

→ skip proof of totality

- → skip proof of totality
- \rightarrow instead derive equations of the form: $x \in f_dom \Rightarrow f(x) = \dots$
- → similarly, conditional induction principle

- → skip proof of totality
- → instead derive equations of the form: $x \in f_dom \Rightarrow f \ x = \dots$
- → similarly, conditional induction principle
- → f_dom = acc f_rel
- → acc = accessible part of f_rel
- the part that can be reached in finitely many steps

- → skip proof of totality
- \rightarrow instead derive equations of the form: $x \in f_dom \Rightarrow f(x) = \dots$
- → similarly, conditional induction principle
- → f_dom = acc f_rel
- → acc = accessible part of f_rel
- → the part that can be reached in finitely many steps
- \rightarrow termination = $\forall x. \ x \in f_dom$
- → still have conditional equations for partial functions

- → skip proof of totality
- → instead derive equations of the form: $x \in f_dom \Rightarrow f(x) = \dots$
- → similarly, conditional induction principle
- → f_dom = acc f_rel
- → acc = accessible part of f_rel
- → the part that can be reached in finitely many steps
- \rightarrow termination = $\forall x. \ x \in f_dom$
- → still have conditional equations for partial functions
- \rightarrow note that for $f :: \alpha \Rightarrow \beta$, this $f_rel :: (\alpha \times \alpha)$ set.

DEMO

termination fun_name sets up termination goal $\forall x. \ x \in \text{fun name dom}$

Three main proof methods:

termination fun_name sets up termination goal $\forall x. \ x \in fun\ name\ dom$

Three main proof methods:

→ lexicographic_order (default tried by fun)

1

termination fun_name sets up termination goal

 $\forall x. \ x \in \text{fun name dom}$

Three main proof methods:

- → lexicographic_order (default tried by fun)
- → size_change (automated translation to simpler size-change graph¹)

¹C.S. Lee, N.D. Jones, A.M. Ben-Amram, The Size-change Principle for Program Termination, POPL 2001.

termination fun_name sets up termination goal

 $\forall x. \ x \in \text{fun name dom}$

Three main proof methods:

- → lexicographic_order (default tried by fun)
- → size_change (automated translation to simpler size-change graph¹)
- → relation R (manual proof via well-founded relation)

¹C.S. Lee, N.D. Jones, A.M. Ben-Amram, The Size-change Principle for Program Termination, POPL 2001.

Well Founded Orders

Definition

 $<_r$ is well founded if well founded induction holds $wf(<_r) \equiv \forall P. \ (\forall x. \ (\forall y <_r x.P \ y) \longrightarrow P \ x) \longrightarrow (\forall x. \ P \ x)$

Well Founded Orders

Definition

 $<_r$ is well founded if well founded induction holds $wf(<_r) \equiv \forall P. \ (\forall x. \ (\forall y <_r x.P \ y) \longrightarrow P \ x) \longrightarrow (\forall x. \ P \ x)$

Well founded induction rule:

$$\frac{\operatorname{wf}(<_r) \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

Well Founded Orders

Definition

$$<_r$$
 is well founded if well founded induction holds $wf(<_r) \equiv \forall P. \ (\forall x. \ (\forall y <_r x.P \ y) \longrightarrow P \ x) \longrightarrow (\forall x. \ P \ x)$

Well founded induction rule:

$$\frac{\operatorname{wf}(<_r) \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): the accessible part is everything, or (equivalent): every nonempty set has a minimal element wrt $<_r$ min $(<_r)$ Q x \equiv $\forall y \in Q$. $y \not<_r x$ wf $(<_r)$ = $(\forall Q \neq \{\}, \exists m \in Q, \min r Q m)$

→ < on N is well founded well founded induction = complete induction

- → < on N is well founded well founded induction = complete induction
- \rightarrow > and \leq on \mathbb{N} are **not** well founded

- → < on N is well founded well founded induction = complete induction
- \rightarrow > and \leq on \mathbb{N} are **not** well founded
- → $x <_r y = x$ dvd $y \land x \neq 1$ on $\mathbb N$ is well founded the minimal elements are the prime numbers

- → < on N is well founded well founded induction = complete induction
- \rightarrow > and < on \mathbb{N} are **not** well founded
- → $x <_r y = x \text{ dvd } y \land x \neq 1 \text{ on } \mathbb{N}$ is well founded the minimal elements are the prime numbers
- → $(a,b) <_r (x,y) = a <_1 x \lor a = x \land b <_2 y$ is well founded if $<_1$ and $<_2$ are well founded

- → < on N is well founded well founded induction = complete induction
- \rightarrow > and < on \mathbb{N} are **not** well founded
- → $x <_r y = x$ dvd $y \land x \neq 1$ on $\mathbb N$ is well founded the minimal elements are the prime numbers
- → (a, b) <_r (x, y) = a <₁ x ∨ a = x ∧ b <₂ y is well founded if <₁ and <₂ are well founded
- → $A <_r B = A \subset B \land \text{finite } B \text{ is well founded}$

- → < on N is well founded well founded induction = complete induction
- \rightarrow > and < on \mathbb{N} are **not** well founded
- → $x <_r y = x \text{ dvd } y \land x \neq 1 \text{ on } \mathbb{N}$ is well founded the minimal elements are the prime numbers
- → (a, b) <_r (x, y) = a <₁ x ∨ a = x ∧ b <₂ y is well founded if <₁ and <₂ are well founded
- → $A <_r B = A \subset B \land \text{ finite } B \text{ is well founded}$
- \rightarrow \subseteq and \subset in general are **not** well founded

More about well founded relations: Term Rewriting and All That

So far for termination. What about the recursion scheme?

So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

```
→ fun fib where
```

```
fib 0 = 1 |
fib (Suc \ 0) = 1 |
fib (Suc \ (Suc \ n)) = fib \ n + fib \ (Suc \ n)
```

So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

```
→ fun fib where
```

```
fib 0 = 1 |
fib (Suc\ 0) = 1 |
fib (Suc\ (Suc\ n)) = fib\ n + fib\ (Suc\ n)
```

Recursion: Suc (Suc n) \sim n, Suc (Suc n) \sim Suc n

So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

```
→ fun fib where
```

```
fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)
```

Recursion: Suc (Suc n) \rightsquigarrow n, Suc (Suc n) \rightsquigarrow Suc n

 \rightarrow fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

→ fun fib where

```
fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)
```

Recursion: Suc (Suc n) \rightsquigarrow n, Suc (Suc n) \rightsquigarrow Suc n

 \rightarrow fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: $x \neq 0 \Longrightarrow x \rightsquigarrow x - 1$

Higher Order:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

```
fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree where treemap fn (Leaf n) = Leaf (fn n) | treemap fn (Branch I) = Branch (map (treemap fn) I)
```

Higher Order:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

```
fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree where treemap fn (Leaf n) = Leaf (fn n) | treemap fn (Branch I) = Branch (map (treemap fn) I)
```

Recursion: $x \in \text{set } I \Longrightarrow (fn, Branch I) \rightsquigarrow (fn, x)$

Higher Order:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

```
fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree where treemap fn (Leaf n) = Leaf (fn n) | treemap fn (Branch I) = Branch (map (treemap fn) I)
```

Recursion: $x \in \text{set I} \Longrightarrow (\text{fn, Branch I}) \leadsto (\text{fn, x})$

How does Isabelle extract context information for the call?

Extracting context for equations

Extracting context for equations

Congruence Rules!

Extracting context for equations

 \Rightarrow

Congruence Rules!

Recall rule if_cong:

$$[\mid b=c;\, c \Longrightarrow x=u;\, \neg\; c \Longrightarrow y=v\mid] \Longrightarrow \\ (\text{if b then } x \text{ else } y)=(\text{if } c \text{ then } u \text{ else } v)$$

Read: for transforming x, use b as context information, for y use $\neg b$.

Extracting context for equations

 \Rightarrow

Congruence Rules!

Recall rule if_cong:

$$[| b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v |] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use $\neg b$. In fun_def: for recursion in x, use b as context, for y use $\neg b$.

Congruence Rules for fun_defs

The same works for function definitions. declare my_rule[fundef_cong]

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong] (if_cong already added by default)

Another example (higher-order):

$$[\mid xs = ys; \bigwedge x. \ x \in set \ ys \Longrightarrow f \ x = g \ x \mid] \Longrightarrow map \ f \ xs = map \ g \ ys$$

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong] (if_cong already added by default)

Another example (higher-order):

$$[\mid xs = ys; \bigwedge x. \ x \in set \ ys \Longrightarrow f \ x = g \ x \mid] \Longrightarrow map \ f \ xs = map \ g \ ys$$

Read: for recursive calls in *f*, *f* is called with elements of *xs*

DEMO

Further Reading

Alexander Krauss, Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD thesis, TU Munich, 2009.

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

Ondřej Kunčar and Andrei Popescu

A Consistent Foundation for Isabelle/HOL
In ITP 2015

https://andreipopescu.uk/pdf/ITP2015.pdf

Rob Arthan

HOL constant definition done right
In ITP 2014

We have seen today ...

- → General recursion with fun/function
- → Induction over recursive functions
- → How fun works
- → Termination, partial functions, congruence rules