# COMP4161 Advanced Topics in Software Verification





Thomas Sewell, Miki Tanaka, Rob Sison T3/2024



## Content

| → Foundations & Principles                                          |                     |
|---------------------------------------------------------------------|---------------------|
| <ul> <li>Intro, Lambda calculus, natural deduction</li> </ul>       | [1,2]               |
| <ul> <li>Higher Order Logic, Isar (part 1)</li> </ul>               | [2,3 <sup>a</sup> ] |
| Term rewriting                                                      | [3,4]               |
| → Proof & Specification Techniques                                  |                     |
| <ul> <li>Inductively defined sets, rule induction</li> </ul>        | [4,5]               |
| <ul> <li>Datatype induction, primitive recursion</li> </ul>         | [5,7]               |
| <ul> <li>General recursive functions, termination proofs</li> </ul> | [7]                 |
| <ul> <li>Proof automation, Isar (part 2)</li> </ul>                 | [8 <sup>b</sup> ]   |
| <ul> <li>Hoare logic, proofs about programs, invariants</li> </ul>  | [8,9]               |
| C verification                                                      | [9,10]              |
| <ul> <li>Practice, questions, exam prep</li> </ul>                  | [10 <sup>c</sup> ]  |



<sup>&</sup>lt;sup>a</sup>a1 due; <sup>b</sup>a2 due; <sup>c</sup>a3 due

# **Datatypes**

**Example:** 

datatype 'a list = Nil | Cons 'a "'a list"

**Properties:** 

# **Datatypes**

## **Example:**

datatype 'a list = Nil | Cons 'a "'a list"

## **Properties:**

→ Constructors:

Nil :: 'a list Cons :: 'a  $\Rightarrow$  'a list  $\Rightarrow$  'a list

# **Datatypes**

## Example:

datatype 'a list = Nil | Cons 'a "'a list"

#### **Properties:**

→ Constructors:

Nil :: 'a list Cons :: 'a  $\Rightarrow$  'a list  $\Rightarrow$  'a list

 $Nil \neq Cons x xs$ → Distinctness:

→ Injectivity: (Cons x xs = Cons y ys) =  $(x = y \land xs = ys)$ 



#### **Enumeration:**

datatype answer = Yes | No | Maybe

#### **Enumeration:**

**datatype** answer = Yes | No | Maybe

## Polymorphic:

**datatype** 'a option = None | Some 'a **datatype** ('a,'b,'c) triple = Triple 'a 'b 'c



**Enumeration:** 

datatype answer = Yes | No | Maybe

Polymorphic:

datatype 'a option = None | Some 'a datatype ('a,'b,'c) triple = Triple 'a 'b 'c

**Recursion:** 

datatype 'a list = Nil | Cons 'a "'a list"



#### **Enumeration:**

datatype answer = Yes | No | Maybe

## Polymorphic:

datatype 'a option = None | Some 'a datatype ('a,'b,'c) triple = Triple 'a 'b 'c

#### **Recursion:**

datatype 'a list = Nil | Cons 'a "a list" datatype 'a tree = Tip | Node 'a "a tree" "a tree"

#### **Enumeration:**

datatype answer = Yes | No | Maybe

## Polymorphic:

datatype 'a option = None | Some 'a datatype ('a,'b,'c) triple = Triple 'a 'b 'c

#### Recursion:

datatype 'a list = Nil | Cons 'a "a list" datatype 'a tree = Tip | Node 'a "a tree" "a tree"

#### **Mutual Recursion:**

datatype even = EvenZero | EvenSucc odd
and odd = OddSucc even



## Nested

#### **Nested recursion:**

datatype 'a tree = Tip | Node 'a "'a tree list"

datatype 'a tree = Tip | Node 'a "'a tree option" "'a tree option"

## **Nested**

#### **Nested recursion:**

```
datatype 'a tree = Tip | Node 'a "a tree list"
datatype 'a tree = Tip | Node 'a "a tree option" "a tree option"
```

→ Recursive call is under a type constructor.



datatype 
$$(\alpha_1, \dots, \alpha_n) \tau = C_1 \tau_{1,1} \dots \tau_{1,n_1}$$
  
 $C_k \tau_{k,1} \dots \tau_{k,n_k}$ 

**datatype** 
$$(\alpha_1, \dots, \alpha_n) \tau = C_1 \tau_{1,1} \dots \tau_{1,n_1}$$
  
 $C_k \tau_{k,1} \dots \tau_{k,n_k}$ 

**→** Constructors:  $C_i :: \tau_{i,1} \Rightarrow \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1,\ldots,\alpha_n) \tau$ 

**datatype** 
$$(\alpha_1, \dots, \alpha_n) \tau = C_1 \tau_{1,1} \dots \tau_{1,n_1}$$
  
 $C_k \tau_{k,1} \dots \tau_{k,n_k}$ 

- $\rightarrow$  Constructors:  $C_i :: \tau_{i,1} \Rightarrow \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1,\ldots,\alpha_n) \tau$
- → Distinctness:  $C_i \dots \neq C_i \dots$  if  $i \neq j$

**datatype** 
$$(\alpha_1, \dots, \alpha_n) \tau = C_1 \tau_{1,1} \dots \tau_{1,n_1}$$
  
 $C_k \tau_{k,1} \dots \tau_{k,n_k}$ 

- $\rightarrow$  Constructors:  $C_i :: \tau_{i,1} \Rightarrow \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_n) \tau$
- → Distinctness:  $C_i \dots \neq C_i \dots$  if  $i \neq j$
- $\rightarrow$  Injectivity:  $(C_i \ x_1 \dots x_{n_i} = C_i \ y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

datatype 
$$(\alpha_1, \dots, \alpha_n) \tau = C_1 \tau_{1,1} \dots \tau_{1,n_1}$$
  
 $C_k \tau_{k,1} \dots \tau_{k,n_k}$ 

- $\rightarrow$  Constructors:  $C_i :: \tau_{i,1} \Rightarrow \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_n) \tau$
- → Distinctness:  $C_i \dots \neq C_i \dots$  if  $i \neq j$
- → Injectivity:  $(C_i x_1 ... x_{n_i} = C_i y_1 ... y_{n_i}) = (x_1 = y_1 \wedge ... \wedge x_{n_i} = y_{n_i})$

## Distinctness and Injectivity applied automatically



datatype 'a list = Nil | Cons 'a "'a list"

→ internally reduced to a single constructor, using product and sum

datatype 'a list = Nil | Cons 'a "'a list"

- → internally reduced to a single constructor, using product and sum
- → constructor defined as an inductive set (like typedef)

## datatype 'a list = Nil | Cons 'a "a list"

- → internally reduced to a single constructor, using product and sum
- → constructor defined as an inductive set (like typedef)
- → recursion: least fixpoint

datatype 'a list = Nil | Cons 'a "a list"

- → internally reduced to a single constructor, using product and sum
- → constructor defined as an inductive set (like typedef)
- → recursion: least fixpoint

More detail: Tutorial on (Co-)datatypes Definitions at isabelle.in.tum.de



Must be definable as a (non-empty) set.



Must be definable as a (non-empty) set.

→ Infinitely branching ok.



## Must be definable as a (non-empty) set.

- → Infinitely branching ok.
- → Mutually recursive ok.



## Must be definable as a (non-empty) set.

- → Infinitely branching ok.
- → Mutually recursive ok.
- → Strictly positive (right of function arrow) occurrence ok.

#### Must be definable as a (non-empty) set.

- → Infinitely branching ok.
- → Mutually recursive ok.
- → Strictly positive (right of function arrow) occurrence ok.

#### Not ok:

$$datatype t = C (t \Rightarrow bool)$$

#### Must be definable as a (non-empty) set.

- → Infinitely branching ok.
- → Mutually recursive ok.
- → Strictly positive (right of function arrow) occurrence ok.

#### Not ok:

```
\begin{array}{lll} \text{datatype t} & = & C \ (\mbox{$t$} \Rightarrow bool) \\ & | & D \ ((bool \Rightarrow \mbox{$t$}) \Rightarrow bool) \end{array}
```

#### Must be definable as a (non-empty) set.

- → Infinitely branching ok.
- → Mutually recursive ok.
- → Strictly positive (right of function arrow) occurrence ok.

#### Not ok:

```
\begin{array}{lll} \textbf{datatype t} & = & C \ (\textbf{t} \Rightarrow bool) \\ & | & D \ ((bool \Rightarrow \textbf{t}) \Rightarrow bool) \\ & | & E \ ((\textbf{t} \Rightarrow bool) \Rightarrow bool) \end{array}
```

**Because:** Cantor's theorem ( $\alpha$  set is larger than  $\alpha$ )



```
datatype ('a, 'b) fun_copy = Fun "'a \Rightarrow 'b" datatype 'a t = F "('a t, 'a) fun_copy"
```

```
datatype ('a, 'b) fun_copy = Fun "'a \Rightarrow 'b" datatype 'a t = F "('a t, 'a) fun_copy"
```

- → recursion in ('a1, ...,'an) t is only allowed on a subset of 'a1 ... 'an
- → these arguments are called *live* arguments

```
datatype ('a, 'b) fun_copy = Fun "'a \Rightarrow 'b" datatype 'a t = F "('a t, 'a) fun_copy"
```

- → recursion in ('a1, ...,'an) t is only allowed on a subset of 'a1 ... 'an
- → these arguments are called *live* arguments
- → Mainly: in "a ⇒ 'b", 'a is dead and 'b is live
- → Thus: in ('a, 'b) fun\_copy, 'a is dead and 'b is live

```
datatype ('a, 'b) fun_copy = Fun "'a \Rightarrow 'b" datatype 'a t = F "('a t, 'a) fun_copy"
```

- → recursion in ('a1, ...,'an) t is only allowed on a subset of 'a1 ... 'an
- → these arguments are called *live* arguments
- → Mainly: in "a ⇒ 'b", 'a is dead and 'b is live
- → Thus: in ('a, 'b) fun\_copy, 'a is dead and 'b is live
- → type constructors must be registered as BNFs\* to have live arguments
- → BNF defines well-behaved type constructors, ie where recursion is allowed



<sup>\*</sup> BNF = Bounded Natural Functors.

```
datatype ('a, 'b) fun_copy = Fun "'a \Rightarrow 'b"
datatype 'a t = F "('a t, 'a) fun_copy"
```

- → recursion in ('a1, ...,'an) t is only allowed on a subset of 'a1 ... 'an
- → these arguments are called *live* arguments
- $\rightarrow$  Mainly: in "a  $\Rightarrow$  'b", 'a is dead and 'b is live
- → Thus: in ('a, 'b) fun\_copy, 'a is dead and 'b is live
- → type constructors must be registered as BNFs\* to have live arguments
- → BNF defines well-behaved type constructors, ie where recursion is allowed
- → datatypes automatically are BNFs (that's how they are constructed)



<sup>\*</sup> BNF = Bounded Natural Functors.

```
datatype ('a, 'b) fun_copy = Fun "'a \Rightarrow 'b" datatype 'a t = F "('a t, 'a) fun_copy"
```

- → recursion in ('a1, ...,'an) t is only allowed on a subset of 'a1 ... 'an
- → these arguments are called *live* arguments
- → Mainly: in "a ⇒ 'b", 'a is dead and 'b is live
- → Thus: in ('a, 'b) fun\_copy, 'a is dead and 'b is live
- → type constructors must be registered as *BNFs*\* to have live arguments
- → BNF defines well-behaved type constructors, ie where recursion is allowed
- → datatypes automatically are BNFs (that's how they are constructed)
- → can register other type constructors as BNFs not covered here\*\*

<sup>\*\*</sup> Defining (Co)datatypes and Primitively (Co)recursive Functions in Isabelle/HOL





<sup>\*</sup> BNF = Bounded Natural Functors.

#### Case

Every datatype introduces a case construct, e.g.

(case 
$$xs$$
 of []  $\Rightarrow \dots \mid y \# ys \Rightarrow \dots y \dots ys \dots$ )

#### Case

Every datatype introduces a case construct, e.g.

(case 
$$xs$$
 of  $[] \Rightarrow \dots \mid y \# ys \Rightarrow \dots y \dots ys \dots)$ 

In general: one case per constructor

#### Case

Every datatype introduces a case construct, e.g.

(case 
$$xs$$
 of  $[] \Rightarrow \dots \mid y \# ys \Rightarrow \dots y \dots ys \dots)$ 

In general: one case per constructor

→ Nested patterns allowed: x#y#zs

#### Case

Every datatype introduces a **case** construct, e.g.

(case 
$$xs$$
 of  $[] \Rightarrow \dots \mid y \# ys \Rightarrow \dots y \dots ys \dots)$ 

In general: one case per constructor

- → Nested patterns allowed: x#y#zs
- → Dummy and default patterns with \_



#### Case

Every datatype introduces a case construct, e.g.

(case 
$$xs$$
 of  $[] \Rightarrow \dots \mid y \# ys \Rightarrow \dots y \dots ys \dots)$ 

In general: one case per constructor

- → Nested patterns allowed: x # y # zs
- → Dummy and default patterns with \_
- → Binds weakly, needs () in context

#### Cases

**apply** (case\_tac t)



#### Cases

apply (case\_tac t)

creates k subgoals

$$\llbracket t = C_i \ x_1 \dots x_p; \dots \rrbracket \Longrightarrow \dots$$

one for each constructor  $C_i$ 

# **DEMO**

# RECURSION

How about f x = f x + 1?



How about f x = f x + 1?

Subtract f x on both sides.

How about f x = f x + 1?

Subtract f x on both sides.

$$\Longrightarrow$$

$$0 = 1$$



How about 
$$f x = f x + 1$$
?

Subtract f x on both sides.

$$\Longrightarrow$$

$$0 = 1$$

All functions in HOL must be total



#### **Primitive Recursion**

primrec guarantees termination structurally

Example primrec def:



#### **Primitive Recursion**

#### primrec guarantees termination structurally

#### Example primrec def:

```
primrec app :: "'a list \Rightarrow 'a list" where "app Nil ys = ys" | "app (Cons x xs) ys = Cons x (app xs ys)"
```

#### **The General Case**

If  $\tau$  is a datatype (with constructors  $C_1, \ldots, C_k$ ) then  $f :: \tau \Rightarrow \tau'$  can be defined by **primitive recursion**:

$$f(C_1 y_{1,1} ... y_{1,n_1}) = r_1$$
  
 $\vdots$   
 $f(C_k y_{k,1} ... y_{k,n_k}) = r_k$ 

#### **The General Case**

If  $\tau$  is a datatype (with constructors  $C_1, \ldots, C_k$ ) then  $f :: \tau \Rightarrow \tau'$  can be defined by **primitive recursion**:

$$f(C_1 y_{1,1} ... y_{1,n_1}) = r_1$$
  
 $\vdots$   
 $f(C_k y_{k,1} ... y_{k,n_k}) = r_k$ 

The recursive calls in  $r_i$  must be **structurally smaller** (of the form f  $a_1$  ...  $y_{i,j}$  ...  $a_p$ )

#### How does this Work?

primrec just fancy syntax for a recursion operator

Example:



#### How does this Work?

#### primrec just fancy syntax for a recursion operator

**Example:** rec\_list :: "'a 
$$\Rightarrow$$
 ('b  $\Rightarrow$  'b list  $\Rightarrow$  'a  $\Rightarrow$  'a)  $\Rightarrow$  'b list  $\Rightarrow$  'a" rec\_list  $f_1$   $f_2$  Nil  $=$   $f_1$  rec\_list  $f_1$   $f_2$  (Cons  $x$   $x$  $s$ )  $=$   $f_2$   $x$   $x$  $s$  (rec\_list  $f_1$   $f_2$   $x$  $s$ )

#### How does this Work?

#### primrec just fancy syntax for a recursion operator

```
Example: rec_list :: "'a \Rightarrow ('b \Rightarrow 'b list \Rightarrow 'a \Rightarrow 'a) \Rightarrow 'b list \Rightarrow 'a" rec_list f_1 f_2 Nil = f_1 rec_list f_1 f_2 (Cons x xs) = f_2 x xs (rec_list f_1 f_2 xs) app \equiv rec_list (\lambda ys. ys) (\lambda x xs xs'. \lambda ys. Cons x (xs' ys)) primrec app :: "'a list \Rightarrow 'a list" where

"app Nil ys = ys" |
"app (Cons x xs) ys = Cons x (app xs ys)"
```

#### rec\_list

Defined: automatically, first inductively (set), then by epsilon

#### rec\_list

**Defined:** automatically, first inductively (set), then by epsilon

$$\frac{(xs, xs') \in \text{list\_rel } f_1 \ f_2}{(\text{Nil}, f_1) \in \text{list\_rel } f_1 \ f_2} \qquad \frac{(xs, xs') \in \text{list\_rel } f_1 \ f_2}{(\text{Cons } x \ xs, f_2 \ x \ xs \ xs') \in \text{list\_rel } f_1 \ f_2}$$

#### rec\_list

**Defined:** automatically, first inductively (set), then by epsilon

$$\frac{(xs,xs') \in \mathsf{list\_rel}\ f_1\ f_2}{(\mathsf{Nil},f_1) \in \mathsf{list\_rel}\ f_1\ f_2} \qquad \frac{(xs,xs') \in \mathsf{list\_rel}\ f_1\ f_2}{(\mathsf{Cons}\ x\ xs,f_2\ x\ xs\ xs') \in \mathsf{list\_rel}\ f_1\ f_2}$$

rec\_list  $f_1$   $f_2$   $xs \equiv$  THE y.  $(xs, y) \in$  list\_rel  $f_1$   $f_2$ Automatic proof that set def indeed is total function (the equations for rec\_list are lemmas!)



# PREDEFINED DATATYPES

# nat is a datatype

 $\textbf{datatype} \ \mathsf{nat} = \mathsf{0} \mid \mathsf{Suc} \ \mathsf{nat}$ 

### nat is a datatype

**datatype** nat 
$$= 0 \mid Suc nat$$

Functions on nat definable by primrec!

## primrec

$$f 0 = \dots$$
  
 $f (Suc n) = \dots f n \dots$ 



datatype 'a option = None | Some 'a

#### Important application:

'b  $\Rightarrow$  'a option  $\sim$  partial function:

datatype 'a option = None | Some 'a

#### Important application:

```
'b \Rightarrow 'a option \sim partial function:
```

 $\begin{array}{ccc} \text{None} & \sim & \text{no result} \\ \text{Some } a & \sim & \text{result } a \end{array}$ 

#### Example:

where



**datatype** 'a option = None | Some 'a

#### Important application:

```
'b \Rightarrow 'a option \sim partial function:

None \sim no result

Some a \sim result a
```

#### Example:

```
primrec lookup :: {}^{\prime}k \Rightarrow ({}^{\prime}k \times {}^{\prime}v) list \Rightarrow {}^{\prime}v option where lookup k [] = None | lookup k (x #xs) =
```



**datatype** 'a option = None | Some 'a

#### Important application:

```
'b \Rightarrow 'a option \sim partial function:

None \sim no result

Some a \sim result a
```

#### Example:

```
primrec lookup :: {}^{\prime}k \Rightarrow ({}^{\prime}k \times {}^{\prime}v) list \Rightarrow {}^{\prime}v option where lookup k [] = None | lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)
```

# **DEMO**

**PRIMREC** 

# INDUCTION

#### Structural induction

P xs holds for all lists xs if

- → P Nil
- → and for arbitrary x and xs,  $Pxs \Longrightarrow P(x\#xs)$

#### Structural induction

P xs holds for all lists xs if

- → P Nil
- → and for arbitrary x and xs, P xs ⇒ P (x#xs) Induction theorem list.induct:

  [P []; \( \Lambda \) a list. P list ⇒ P (a#list) \( \begin{align\*} \) ⇒ P list
  \( \)

#### Structural induction

#### P xs holds for all lists xs if

- → P Nil
- → and for arbitrary x and xs,  $Pxs \Longrightarrow P(x\#xs)$ Induction theorem **list.induct**:  $\llbracket P \rrbracket \colon \land a \text{ list. } P \text{ list } \Longrightarrow P(a\#\text{list}) \rrbracket \Longrightarrow P \text{ list}$
- → General proof method for induction: (induct x)
  - x must be a free variable in the first subgoal.
  - type of x must be a datatype.

#### **Basic heuristics**

#### Theorems about recursive functions are proved by induction

Induction on argument number i of f if f is defined by recursion on argument number i



#### A tail recursive list reverse:

```
primrec itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list where itrev [] ys = |
```

#### A tail recursive list reverse:

```
primrec itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list where itrev [] ys = ys | itrev (x\#xs) ys =
```

#### A tail recursive list reverse:

```
primrec itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list where itrev [] ys = ys | itrev (x\#xs) ys = itrev xs (x\#ys)
```

#### A tail recursive list reverse:

```
primrec itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list where itrev [] ys = ys | itrev (x\#xs) ys = itrev xs (x\#ys)
```

**lemma** itrev xs [] = rev xs

# **DEMO**

PROOF ATTEMPT

#### Generalisation

#### Replace constants by variables

**lemma** itrev xs ys = rev xs@ys



#### Generalisation

#### Replace constants by variables

**lemma** itrev xs ys = rev xs@ys

Quantify free variables by ∀ (except the induction variable)



#### Generalisation

#### Replace constants by variables

**lemma** itrev xs ys = rev xs@ys

Quantify free variables by ∀ (except the induction variable)

**lemma**  $\forall ys$ . itrev  $xs \ ys = \text{rev } xs@ys$ 

Or: apply (induct xs arbitrary: ys)



## We have seen today ...

- → Datatypes
- → Primitive recursion
- → Case distinction
- → Structural Induction

#### **Exercises**

- → define a primitive recursive function **Isum** :: nat list ⇒ nat that returns the sum of the elements in a list.
- → show "2 \* Isum [0.. < Suc n] = n \* (n + 1)"
- → show "lsum (replicate  $n \ a$ ) = n \* a"
- → define a function **IsumT** using a tail recursive version of listsum.
- $\rightarrow$  show that the two functions are equivalent: Isum xs = IsumT xs