COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

→ Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
C verification	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Last Time

- → Sets
- → Type Definitions
- → Inductive Definitions

INDUCTIVE DEFINITIONS

HOW THEY WORK

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

 \rightarrow N is the set of natural numbers \mathbb{N}

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers IN
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers IN
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

→ Objective: no junk. Only what must be in X shall be in X.

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- → Objective: no junk. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$ define set $X \subseteq A$

Formally:

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$ define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X possibly infinite) **Applying rules** R to a set B:

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$ define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X) possibly infinite)

Applying rules R to a set B: \hat{R} $B \equiv \{x . \exists H . (H, x) \in R \land H \subseteq B\}$

Example:

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$ define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X) possibly infinite)

Applying rules R to a set B: \hat{R} $B \equiv \{x . \exists H . (H, x) \in R \land H \subseteq B\}$

Example:

$$R \equiv \{(\{\},0)\} \cup \{(\{n\},n+1). \ n \in \mathbb{R}\}$$

 $\hat{R} \{3,6,10\} =$

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$ define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X) possibly infinite)

Applying rules R to a set B: \hat{R} $B \equiv \{x . \exists H . (H, x) \in R \land H \subseteq B\}$

Example:

$$\begin{array}{ll} R & \equiv & \{(\{\},0)\} \cup \{(\{n\},n+1). \ n \in \mathbb{R}\} \\ \hat{R} \{3,6,10\} & = & \{0,4,7,11\} \end{array}$$

The Set

Definition: B is R-closed iff \hat{R} $B \subseteq B$

The Set

Definition: B is R-closed iff \hat{R} $B \subseteq B$

Definition: X is the least R-closed subset of A

This does always exist:

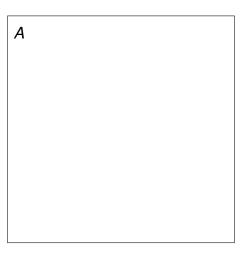
The Set

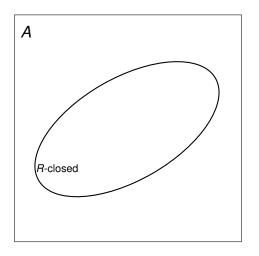
Definition: B is R-closed iff \hat{R} $B \subseteq B$

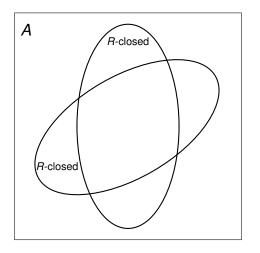
Definition: X is the least R-closed subset of A

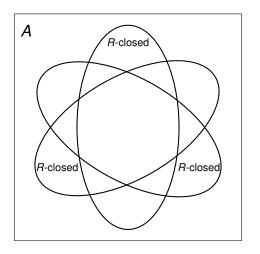
This does always exist:

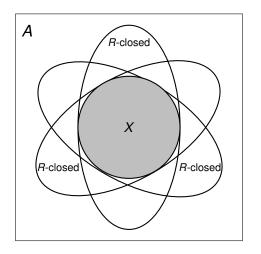
Fact: $X = \bigcap \{B \subseteq A. \ B \ R - \mathsf{closed}\}$











Rule Induction

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in N. \ P \ x$$

Rule Induction

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \land n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in N. \ P \ x$$

In general:

$$\frac{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}{\forall x\in X.\ P\ x}$$

$$\frac{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}{\forall x\in X.\ P\ x}$$

$$\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a$$
 says

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a_n}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a_n$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but:

$$\frac{\forall (\{a_1,\ldots a_n\},a) \in R.\ P\ a_1 \wedge \ldots \wedge P\ a_n \Longrightarrow P\ a_n}{\forall x \in X.\ P\ x}$$

$$\forall (\{a_1,\ldots a_n\},a) \in R.\ P\ a_1 \wedge \ldots \wedge P\ a_n \Longrightarrow P\ a_n$$

says
$$\{x. P x\}$$
 is R -closed

but: X is the least R-closed set

hence:

$$\frac{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}{\forall x\in X.\ P\ x}$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but: X is the least R-closed set

hence: $X \subseteq \{x. P x\}$

which means:

$$\frac{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}{\forall x\in X.\ P\ x}$$

$$\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a$$
says
$$\{x.\ P\ x\} \text{ is }R\text{-closed}$$

but: X is the least R-closed set

hence: $X \subseteq \{x. P x\}$ which means: $\forall x \in X. P x$

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but: X is the least R-closed set

hence: $X \subseteq \{x. P x\}$ which means: $\forall x \in X. P x$

qed

Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

induction scheme:

$$(\forall (\{a_1, \dots a_n\}, a) \in R. P a_1 \land \dots \land P a_n \land C_1 \land \dots \land C_m \land \{a_1, \dots, a_n\} \subseteq X \Longrightarrow P a)$$

$$\Longrightarrow \forall x \in X. P x$$

X as Fixpoint

How to compute X?

X as Fixpoint

How to compute X?

 $X = \bigcap \{B \subseteq A.\ B\ R - \mathsf{closed}\}\ \mathsf{hard}\ \mathsf{to}\ \mathsf{work}\ \mathsf{with}.$

Instead:

How to compute X?

 $X = \bigcap \{B \subseteq A.\ B\ R - \text{closed}\}\$ hard to work with.

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

How to compute X?

 $X = \bigcap \{B \subseteq A.\ B\ R - \text{closed}\}\$ hard to work with.

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

$$X_0 = \hat{R}^0 \{\} = \{\}$$

How to compute X?

 $X = \bigcap \{B \subseteq A \mid B \mid R - closed\}$ hard to work with.

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

$$X_0 = \hat{R}^0 \{\} = \{\}$$

 $X_1 = \hat{R}^1 \{\} = \text{rules without hypotheses}$
 \vdots

How to compute X?

 $X = \bigcap \{B \subseteq A \mid B \mid R - closed\}$ hard to work with.

Instead: view X as least fixpoint, X least set with \hat{R} X = X.

$$X_0 = \hat{R}^0 \{\} = \{\}$$

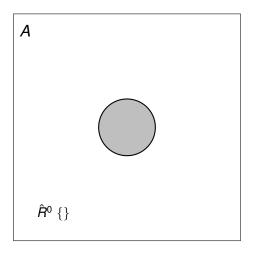
 $X_1 = \hat{R}^1 \{\} = \text{rules without hypotheses}$
 \vdots
 $X_n = \hat{R}^n \{\}$

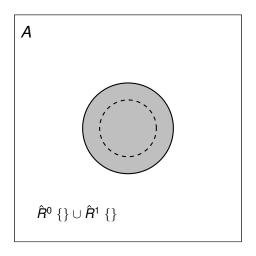
How to compute X?

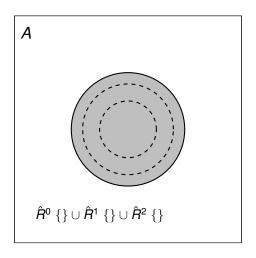
 $X = \bigcap \{B \subseteq A.\ B\ R - \text{closed}\}\$ hard to work with.

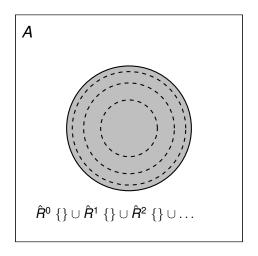
Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

$$X_0 = \hat{R}^0 \ \{\} = \{\}$$
 $X_1 = \hat{R}^1 \ \{\} = \text{rules without hypotheses}$
 \vdots
 $X_n = \hat{R}^n \ \{\}$
 $X_\omega = \bigcup_{n \in \mathbb{N}} (\hat{R}^n \ \{\}) = X$









Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

→ least and greatest fixpoints exist (complete lattice always non-empty).

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- → least and greatest fixpoints exist (complete lattice always non-empty).
- → can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize this lecture in Isabelle:

- **→** Define **closed** f A :: $(\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool}$
- **→** Show closed $f A \land \text{closed } f B \Longrightarrow \text{closed } f (A \cap B)$ if f is monotone (**mono** is predefined)
- → Define Ifpt f as the intersection of all f-closed sets
- → Show that Ifpt *f* is a fixpoint of *f* if *f* is monotone
- → Show that Ifpt f is the least fixpoint of f
- **→** Declare a constant $R :: (\alpha \operatorname{set} \times \alpha) \operatorname{set}$
- **→** Define \hat{R} :: α set $\Rightarrow \alpha$ set in terms of R
- → Show soundness of rule induction using R and Ifpt R

We have learned today ...

- → Formal background of inductive definitions
- → Definition by intersection
- → Computation by iteration
- → Formalisation in Isabelle

