COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison

T3/2024

Content

*^a*a1 due; *^b*a2 due; *^c*a3 due

Last Time

- \rightarrow Sets
- \rightarrow Type Definitions
- \rightarrow Inductive Definitions

INDUCTIVE DEFINITIONS

HOW THEY WORK

The Nat Example

$$
\overline{0 \in N} \qquad \frac{n \in N}{n+1 \in N}
$$

- **→** *N* is the set of natural numbers **N**
- \rightarrow But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- ➜ IN is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- ➜ Objective: **no junk**. Only what must be in *X* shall be in *X*.
- \rightarrow Gives rise to a nice proof principle (rule induction)

Formally

Rules
$$
\frac{a_1 \in X \dots a_n \in X}{a \in X}
$$
 with $a_1, \dots, a_n, a \in A$
define set *X* ⊆ *A*

Formally: set of rules $R \subseteq A$ set $\times A$ (*R, X* possibly infinite)

Applying rules *R* to a set *B*: $\hat{H} B \equiv \{x, \exists H, (H, x) \in R \wedge H \subseteq B\}$

Example:

$$
R = \{(\{\},0)\} \cup \{(\{n\},n+1), n \in \mathbb{R}\}\
$$

$$
\hat{R} \{3,6,10\} = \{0,4,7,11\}
$$

The Set

Definition: *B* is *R*-closed iff \hat{R} *B* \subseteq *B*

Definition: *X* is the least *R*-closed subset of *A*

This does always exist:

Fact:
$$
X = \bigcap \{ B \subseteq A \colon B \mid R-\text{closed} \}
$$

Generation from Above

Rule Induction

$$
\overline{0 \in N} \qquad \frac{n \in N}{n+1 \in N}
$$

induces induction principle

$$
\llbracket P\ 0; \ \wedge\ n.\ P\ n \Longrightarrow P\ (n+1)\rrbracket \Longrightarrow \forall x \in N.\ P\ x
$$

In general:

$$
\frac{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}{\forall x\in X.\ P\ x}
$$

 O_{TIS}

Why does this work?

$$
\frac{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}{\forall x\in X.\ P\ x}
$$

$$
\forall (\{a_1,\ldots a_n\},a) \in R.\ P \ a_1 \wedge \ldots \wedge P \ a_n \Longrightarrow P \ a
$$

says

$$
\{x.\ P \ x\} \ \text{is } R\text{-closed}
$$

but: *X* is the least *R*-closed set **hence:** $X \subseteq \{x. P x\}$ **which means:** $\forall x \in X$. *P x*

qed

Rules with side conditions

$$
\underbrace{a_1 \in X \quad \ldots \quad a_n \in X \quad C_1 \quad \ldots \quad C_m}_{a \in X}
$$

induction scheme:

$$
(\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\land\ldots\land P\ a_n\land\nC_1\land\ldots\land C_m\land\{a_1,\ldots,a_n\}\subseteq X\Longrightarrow P\ a)
$$
\n
$$
\implies\forall x\in X.\ P\ x
$$

 O_{TIS}

X **as Fixpoint**

How to compute *X***?** $\mathcal{X} = \bigcap \{\mathcal{B} \subseteq \mathcal{A}$. $\mathcal{B} \mathrel{R}-$ closed $\}$ hard to work with.

Instead: view *X* as least fixpoint, *X* least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

$$
X_0 = \hat{R}^0 \{ \} = \{ \}
$$

\n
$$
X_1 = \hat{R}^1 \{ \} = \text{rules without hypotheses}
$$

\n
$$
X_n = \hat{R}^n \{ \}
$$

$$
X_{\omega}=\bigcup_{n\in\mathbb{N}}(\hat{R}^n\{\})=X
$$

Generation from Below

Does this always work?

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f : A \Rightarrow A$ a monotone function.

Then the fixpoints of *f* again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- \rightarrow least and greatest fixpoints exist (complete lattice always non-empty).
- \rightarrow can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize this lecture in Isabelle:

- \rightarrow Define **closed** *f A* :: (α set \Rightarrow α set) \Rightarrow α set \Rightarrow bool
- ➜ Show closed *f A* ∧ closed *f B* =⇒ closed *f* (*A* ∩ *B*) if *f* is monotone (**mono** is predefined)
- ➜ Define **lfpt** *f* as the intersection of all *f*-closed sets
- ➜ Show that lfpt *f* is a fixpoint of *f* if *f* is monotone
- ➜ Show that lfpt *f* is the least fixpoint of *f*
- \rightarrow Declare a constant *R* :: (α set \times α) set
- \rightarrow Define \hat{B} :: α set \Rightarrow α set in terms of *R*
- ➜ Show soundness of rule induction using *R* and lfpt *R*ˆ

We have learned today ...

- \rightarrow Formal background of inductive definitions
- \rightarrow Definition by intersection
- \rightarrow Computation by iteration
- \rightarrow Formalisation in Isabelle

