COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

→ Foundations & Principles

Higher Order Logic, Isar (part 1)Term rewriting	$[2,3^a]$ $[3,4]$
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]

Intro. Lambda calculus, natural deduction.

• General recursive functions, termination proofs

 Proof automation, Isar (part 2) [8^b] Hoare logic, proofs about programs, invariants [8,9] C verification [9,10]

 Practice, questions, exam prep $[10^{c}]$

aa1 due: ba2 due: ca3 due

[1.2]

Last Time

- → Sets
- → Type Definitions
- → Inductive Definitions

INDUCTIVE DEFINITIONS

HOW THEY WORK

The Nat Example

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- → Objective: **no junk**. Only what must be in *X* shall be in *X*.
- → Gives rise to a nice proof principle (rule induction)

Formally

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$ define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X) possibly infinite)

Applying rules *R* to a set *B*:

$$\hat{R} B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$$

Example:

$$R \equiv \{(\{\},0)\} \cup \{(\{n\},n+1). n \in \mathbb{R}\}$$

 $\hat{R} \{3,6,10\} = \{0,4,7,11\}$

The Set

Definition: B is R-closed iff \hat{R} $B \subseteq B$

Definition: X is the least R-closed subset of A

This does always exist:

Fact:
$$X = \bigcap \{B \subseteq A.\ B\ R\text{-closed}\}$$

Generation from Above

Rule Induction

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in N. \ P \ x$$

In general:

$$\frac{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}{\forall x\in X.\ P\ x}$$

Why does this work?

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but: X is the least R-closed set

hence: $X \subseteq \{x. P x\}$ which means: $\forall x \in X. P x$

qed

Rules with side conditions

$$\underbrace{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}_{a \in X}$$

induction scheme:

$$(\forall (\{a_1, \dots a_n\}, a) \in R. P a_1 \wedge \dots \wedge P a_n \wedge C_1 \wedge \dots \wedge C_m \wedge \{a_1, \dots, a_n\} \subseteq X \Longrightarrow P a)$$

$$\Longrightarrow$$

$$\forall x \in X. P x$$

X as Fixpoint

How to compute X?

 $X = \bigcap \{B \subseteq A.\ B\ R - \text{closed}\}\$ hard to work with.

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

$$X_0 = \hat{R}^0 \ \{\} = \{\}$$

 $X_1 = \hat{R}^1 \ \{\} = \text{rules without hypotheses}$
 \vdots
 $X_n = \hat{R}^n \ \{\}$
 $X_\omega = \bigcup_{n \in \mathbb{N}} (\hat{R}^n \ \{\}) = X$

Generation from Below

Does this always work?

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function.

Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- → least and greatest fixpoints exist (complete lattice always non-empty).
- → can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize this lecture in Isabelle:

- \rightarrow Define **closed** f A :: (α set $\Rightarrow \alpha$ set) $\Rightarrow \alpha$ set \Rightarrow bool
- → Show closed $f A \land \text{closed } f B \Longrightarrow \text{closed } f (A \cap B)$ if f is monotone (mono is predefined)
- → Define **Ifpt** *f* as the intersection of all *f*-closed sets
- → Show that Ifpt f is a fixpoint of f if f is monotone
- → Show that Ifpt f is the least fixpoint of f
- \rightarrow Declare a constant $R :: (\alpha \operatorname{set} \times \alpha) \operatorname{set}$
- \rightarrow Define \hat{R} :: α set $\Rightarrow \alpha$ set in terms of R
- \rightarrow Show soundness of rule induction using R and lfpt \hat{R}

We have learned today ...

- → Formal background of inductive definitions
- → Definition by intersection
- → Computation by iteration
- → Formalisation in Isabelle