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Content

➜ Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

➜ Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c ]

aa1 due; ba2 due; ca3 due
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Last Time

➜ Sets
➜ Type Definitions
➜ Inductive Definitions
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INDUCTIVE DEFINITIONS

HOW THEY WORK



The Nat Example

0 ∈ N
n ∈ N

n + 1 ∈ N
➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR,
n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?
➜ Objective: no junk. Only what must be in X shall be in X .
➜ Gives rise to a nice proof principle (rule induction)
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Formally

Rules a1 ∈ X . . . an ∈ X
a ∈ X

with a1, . . . ,an,a ∈ A

define set X ⊆ A

Formally: set of rules R ⊆ A set × A (R, X possibly infinite)

Applying rules R to a set B:
R̂ B ≡ {x . ∃H. (H, x) ∈ R ∧ H ⊆ B}

Example:

R ≡ {({},0)} ∪ {({n},n + 1). n ∈ IR}
R̂ {3,6,10} = {0,4,7,11}
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The Set

Definition: B is R-closed iff R̂ B ⊆ B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: X =
⋂
{B ⊆ A. B R−closed}
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Generation from Above

A

R-closed

R-closed

R-closed

X
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Rule Induction

0 ∈ N
n ∈ N

n + 1 ∈ N

induces induction principle

[[P 0;
∧

n. P n =⇒ P (n + 1)]] =⇒ ∀x ∈ N. P x

In general:

∀({a1, . . .an},a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a
∀x ∈ X . P x
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Why does this work?

∀({a1, . . .an},a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a
∀x ∈ X . P x

∀({a1, . . .an},a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a
says

{x . P x} is R-closed

but: X is the least R-closed set
hence: X ⊆ {x . P x}
which means: ∀x ∈ X . P x

qed
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Rules with side conditions

a1 ∈ X . . . an ∈ X C1 . . . Cm

a ∈ X

induction scheme:

(∀({a1, . . .an},a) ∈ R. P a1 ∧ . . . ∧ P an ∧
C1 ∧ . . . ∧ Cm ∧
{a1, . . . ,an} ⊆ X =⇒ P a)

=⇒
∀x ∈ X . P x
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X as Fixpoint

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set with R̂ X = X .

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}
X1 = R̂1 {} = rules without hypotheses
...
Xn = R̂n {}

Xω =
⋃

n∈IN(R̂
n {}) = X
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Generation from Below

A

R̂0 {}

A

R̂0 {} ∪ R̂1 {}

A

R̂0 {} ∪ R̂1 {} ∪ R̂2 {}

A

R̂0 {} ∪ R̂1 {} ∪ R̂2 {} ∪ . . .
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Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A,≤) be a complete lattice, and f :: A ⇒ A a monotone
function.
Then the fixpoints of f again form a complete lattice.

Lattice:
Finite subsets have a greatest lower bound (meet) and least
upper bound (join).

Complete Lattice:
All subsets have a greatest lower bound and least upper bound.

Implications:
➜ least and greatest fixpoints exist (complete lattice always

non-empty).
➜ can be reached by (possibly infinite) iteration. (Why?)
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Exercise

Formalize this lecture in Isabelle:
➜ Define closed f A :: (α set ⇒ α set) ⇒ α set ⇒ bool
➜ Show closed f A ∧ closed f B =⇒ closed f (A ∩ B) if f is

monotone
(mono is predefined)

➜ Define lfpt f as the intersection of all f -closed sets
➜ Show that lfpt f is a fixpoint of f if f is monotone
➜ Show that lfpt f is the least fixpoint of f
➜ Declare a constant R :: (α set × α) set
➜ Define R̂ :: α set ⇒ α set in terms of R
➜ Show soundness of rule induction using R and lfpt R̂
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We have learned today ...

➜ Formal background of inductive definitions
➜ Definition by intersection
➜ Computation by iteration
➜ Formalisation in Isabelle
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