COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

→ Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
C verification	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

→ Conditional term rewriting

- → Conditional term rewriting
- → Case Splitting with the simplifier

- → Conditional term rewriting
- → Case Splitting with the simplifier
- → Congruence rules

- → Conditional term rewriting
- → Case Splitting with the simplifier
- → Congruence rules
- → AC Rules

- → Conditional term rewriting
- → Case Splitting with the simplifier
- → Congruence rules
- → AC Rules
- → Knuth-Bendix Completion (Waldmeister)

- → Conditional term rewriting
- → Case Splitting with the simplifier
- → Congruence rules
- → AC Rules
- → Knuth-Bendix Completion (Waldmeister)
- → Orthogonal Rewrite Systems

SPECIFICATION TECHNIQUES

SETS

→ {}, {
$$e_1,...,e_n$$
}, { $x. P x$ }

- → {}, { $e_1,...,e_n$ }, {x. P x}
- $ightharpoonup e \in A$, $A \subseteq B$

- → $\{\}, \{e_1, \ldots, e_n\}, \{x. P x\}$
- \rightarrow $e \in A$, $A \subseteq B$
- \rightarrow $A \cup B$, $A \cap B$, A B, -A

- \rightarrow {}, { e_1, \ldots, e_n }, {x. P x}
- \rightarrow $e \in A$, $A \subseteq B$
- \rightarrow $A \cup B$, $A \cap B$, A B, -A
- \rightarrow $\bigcup x \in A$. Bx, $\bigcap x \in A$. Bx, $\bigcap A$, $\bigcup A$

- \rightarrow {}, { e_1, \ldots, e_n }, {x. P x}
- \rightarrow $e \in A$, $A \subseteq B$
- \rightarrow $A \cup B$, $A \cap B$, A B, -A
- \rightarrow $\bigcup x \in A$. Bx, $\bigcap x \in A$. Bx, $\bigcap A$, $\bigcup A$
- **→** {*i..j*}

- \rightarrow {}, { e_1, \ldots, e_n }, {x. P x}
- \rightarrow $e \in A$, $A \subseteq B$
- \rightarrow $A \cup B$, $A \cap B$, A B, -A
- \rightarrow $\bigcup x \in A$. Bx, $\bigcap x \in A$. Bx, $\bigcap A$, $\bigcup A$
- **→** {*i..j*}
- \rightarrow insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set

- → $\{\}, \{e_1, \ldots, e_n\}, \{x. P x\}$
- \rightarrow $e \in A$, $A \subseteq B$
- \rightarrow $A \cup B$, $A \cap B$, A B, -A
- \rightarrow $\bigcup x \in A$. Bx, $\bigcap x \in A$. Bx, $\bigcap A$, $\bigcup A$
- **→** {*i..j*}
- \rightarrow insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set
- $f'A \equiv \{y. \ \exists x \in A. \ y = f \ x\}$
- → ...

Proofs about Sets

Natural deduction proofs:

 \Rightarrow equalityI: $\llbracket A \subseteq B; \ B \subseteq A \rrbracket \Longrightarrow A = B$

Proofs about Sets

Natural deduction proofs:

- \rightarrow equalityl: $[A \subseteq B; B \subseteq A] \Longrightarrow A = B$
- → subsetI: $(\land x. x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$

Proofs about Sets

Natural deduction proofs:

- \rightarrow equalityl: $[A \subseteq B; B \subseteq A] \Longrightarrow A = B$
- → subsetl: $(\land x. x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- → ... find_theorems

 $\rightarrow \forall x \in A. P x$

$$\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$$

- $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\Rightarrow \exists x \in A. P x$

- $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$

- $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$
- → balll: $(\bigwedge x. x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A. P x$
- → bspec: $\llbracket \forall x \in A. \ P \ x; x \in A \rrbracket \Longrightarrow P \ x$

- $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$
- \rightarrow ball: $(\land x. \ x \in A \Longrightarrow P \ x) \Longrightarrow \forall x \in A. \ P \ x$
- → bspec: $\llbracket \forall x \in A. \ P \ x; x \in A \rrbracket \Longrightarrow P \ x$
- \rightarrow bexl: $\llbracket P \ x; x \in A \rrbracket \Longrightarrow \exists x \in A. \ P \ x$
- ightharpoonup bexE: $[\![\exists x \in A.\ P\ x; \bigwedge x.\ [\![x \in A; P\ x]\!] \Longrightarrow Q\!]\!] \Longrightarrow Q$

DEMO

SETS

→ Axioms:

Example: **axiomatization where** refl: "t = t"

→ Axioms:

Example: **axiomatization where** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Axioms:

Example: **axiomatization where** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ "

→ Axioms:

Example: **axiomatization where** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def.

→ Axioms:

Example: **axiomatization where** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def.

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

→ Axioms:

Example: **axiomatization where** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def.

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

→ typedecl: by name only

Example: **typedecl** names
Introduces new type *names* without any further assumptions

→ typedecl: by name only

Example: **typedecl** names
Introduces new type *names* without any further assumptions

→ type_synonym: by abbreviation

Example: **type_synonym** α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally

→ typedecl: by name only

Example: **typedecl** names
Introduces new type *names* without any further assumptions

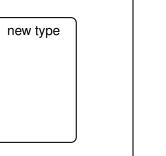
→ type_synonym: by abbreviation

Example: **type_synonym** α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally

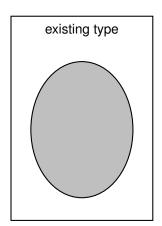
→ typedef: by definition as a set

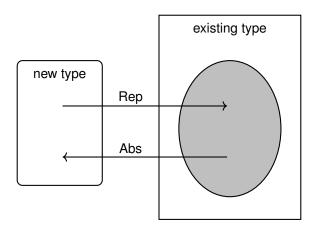
Example: **typedef** new_type = "{some set}" roof>
Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.

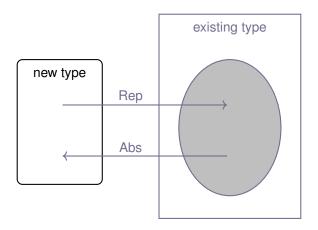
new type



existing type







 (α, β) Prod

① Pick existing type:

$$(\alpha, \beta)$$
 Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset:

$$(\alpha, \beta)$$
 Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset: (α, β) Prod = $\{f. \exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b\}$
- ③ We get from Isabelle:

$$(\alpha, \beta)$$
 Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset:

$$(\alpha, \beta)$$
 Prod = $\{f. \exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b\}$

- ③ We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- 4 We now can:

$$(\alpha, \beta)$$
 Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset:

$$(\alpha, \beta)$$
 Prod = $\{f. \exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b\}$

- ③ We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- We now can:
 - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
 - derive all characteristic theorems
 - forget about Rep/Abs, use characteristic theorems instead

DEMO

INTRODUCING NEW TYPES

INDUCTIVE DEFINITIONS

Example

$$\begin{split} & \frac{ \llbracket e \rrbracket \sigma = \textit{v} }{ \langle \mathsf{skip}, \sigma \rangle \longrightarrow \sigma } & \frac{ \llbracket e \rrbracket \sigma = \textit{v} }{ \langle \mathsf{x} := \mathsf{e}, \sigma \rangle \longrightarrow \sigma [\textit{x} \mapsto \textit{v}] } \\ & \frac{ \langle \textit{c}_1, \sigma \rangle \longrightarrow \sigma' \quad \langle \textit{c}_2, \sigma' \rangle \longrightarrow \sigma'' }{ \langle \textit{c}_1; \textit{c}_2, \sigma \rangle \longrightarrow \sigma'' } \\ & \frac{ \llbracket b \rrbracket \sigma = \mathsf{False} }{ \langle \mathsf{while} \ \textit{b} \ \mathsf{do} \ \textit{c}, \sigma \rangle \longrightarrow \sigma } \end{split}$$

$$\llbracket \textit{b} \rrbracket \sigma = \mathsf{True} \quad \langle \textit{c}, \sigma \rangle \longrightarrow \sigma' \quad \langle \mathsf{while} \ \textit{b} \ \mathsf{do} \ \textit{c}, \sigma' \rangle \longrightarrow \sigma'' }$$

 $\langle \text{while } b \text{ do } c, \sigma \rangle \longrightarrow \sigma''$

 \rightarrow $\langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$

- → $\langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$
- → relations are sets: E :: (com × state × state) set

- → $\langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$
- → relations are sets: E :: (com × state × state) set
- → the rules define a set inductively

- $ightharpoonup \langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$
- → relations are sets: E :: (com × state × state) set
- → the rules define a set inductively

But which set?

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

 \rightarrow N is the set of natural numbers \mathbb{N}

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers IN
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers IN
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

→ Objective: no junk. Only what must be in X shall be in X.

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- → N is the set of natural numbers IN
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- → Objective: no junk. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- → N is the set of natural numbers IN
- **→** But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- → Objective: **no junk**. Only what must be in *X* shall be in *X*.
- → Gives rise to a nice proof principle (rule induction)
- → Alternative (greatest set) occasionally also useful: coinduction

Rule Induction

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in N. \ P \ x$$

DEMO

INDUCTIVE DEFINITIONS

We have learned today ...

→ Sets

We have learned today ...

- → Sets
- → Type Definitions

We have learned today ...

- → Sets
- → Type Definitions
- → Inductive Definitions

