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Content

➜ Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

➜ Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c ]

aa1 due; ba2 due; ca3 due
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Last Time

➜ Conditional term rewriting
➜ Case Splitting with the simplifier
➜ Congruence rules
➜ AC Rules
➜ Knuth-Bendix Completion (Waldmeister)
➜ Orthogonal Rewrite Systems
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SPECIFICATION TECHNIQUES

SETS



Sets in Isabelle

Type ’a set: sets over type ’a

➜ {}, {e1, . . . ,en}, {x . P x}
➜ e ∈ A, A ⊆ B
➜ A ∪ B, A ∩ B, A − B, −A
➜

⋃
x ∈ A. B x ,

⋂
x ∈ A. B x ,

⋂
A,

⋃
A

➜ {i ..j}
➜ insert :: α ⇒ α set ⇒ α set
➜ f ‘A ≡ {y . ∃x ∈ A. y = f x}
➜ . . .
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Proofs about Sets

Natural deduction proofs:
➜ equalityI: [[A ⊆ B; B ⊆ A]] =⇒ A = B
➜ subsetI: (

∧
x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

➜ . . . find theorems
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Bounded Quantifiers

➜ ∀x ∈ A. P x ≡ ∀x . x ∈ A −→ P x
➜ ∃x ∈ A. P x ≡ ∃x . x ∈ A ∧ P x
➜ ballI: (

∧
x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

➜ bspec: [[∀x ∈ A. P x ; x ∈ A]] =⇒ P x
➜ bexI: [[P x ; x ∈ A]] =⇒ ∃x ∈ A. P x
➜ bexE: [[∃x ∈ A. P x ;

∧
x . [[x ∈ A;P x ]] =⇒ Q]] =⇒ Q
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DEMO

SETS



The Three Basic Ways of Introducing Theorems

➜ Axioms:

Example: axiomatization where refl: ”t = t”

Do not use. Evil. Can make your logic inconsistent.

➜ Definitions:

Example: definition inj where ”inj
f ≡ ∀x y . f x = f y −→ x = y ”
Introduces a new lemma called inj def.

➜ Proofs:

Example: lemma ”inj (λx . x + 1)”

The harder, but safe choice.

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



The Three Basic Ways of Introducing Types

➜ typedecl: by name only

Example: typedecl names
Introduces new type names without any further assumptions

➜ type synonym: by abbreviation

Example: type synonym α rel = ”α ⇒ α ⇒ bool”
Introduces abbreviation rel for existing type α ⇒ α ⇒ bool
Type abbreviations are immediately expanded internally

➜ typedef: by definition as a set

Example: typedef new type = ”{some set}” <proof>
Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.
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How typedef works

new type

existing type

Abs

Rep
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How typedef works

new type

existing type

Abs

Rep
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Example: Pairs

(α, β) Prod
➀ Pick existing type: α ⇒ β ⇒ bool
➁ Identify subset:

(α, β) Prod = {f . ∃a b. f = λ(x :: α) (y :: β). x = a ∧ y = b}
➂ We get from Isabelle:

• functions Abs Prod, Rep Prod
• both injective
• Abs Prod (Rep Prod x) = x

➃ We now can:
• define constants Pair, fst, snd in terms of Abs Prod and

Rep Prod
• derive all characteristic theorems
• forget about Rep/Abs, use characteristic theorems instead
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DEMO

INTRODUCING NEW TYPES



INDUCTIVE DEFINITIONS



Example

⟨skip, σ⟩ −→ σ

[[e]]σ = v
⟨x := e, σ⟩ −→ σ[x 7→ v ]

⟨c1, σ⟩ −→ σ′ ⟨c2, σ
′⟩ −→ σ′′

⟨c1; c2, σ⟩ −→ σ′′

[[b]]σ = False
⟨while b do c, σ⟩ −→ σ

[[b]]σ = True ⟨c, σ⟩ −→ σ′ ⟨while b do c, σ′⟩ −→ σ′′

⟨while b do c, σ⟩ −→ σ′′
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What does this mean?

➜ ⟨c, σ⟩ −→ σ′ fancy syntax for a relation (c, σ, σ′) ∈ E
➜ relations are sets: E :: (com × state × state) set
➜ the rules define a set inductively

But which set?
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Simpler Example

0 ∈ N
n ∈ N

n + 1 ∈ N
➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR,
n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?
➜ Objective: no junk. Only what must be in X shall be in X .
➜ Gives rise to a nice proof principle (rule induction)
➜ Alternative (greatest set) occasionally also useful: coinduction
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Rule Induction

0 ∈ N
n ∈ N

n + 1 ∈ N

induces induction principle

[[P 0;
∧

n. P n =⇒ P (n + 1)]] =⇒ ∀x ∈ N. P x
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DEMO

INDUCTIVE DEFINITIONS



We have learned today ...

➜ Sets
➜ Type Definitions
➜ Inductive Definitions
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