COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison

T3/2024

Content

→	Foundations & Principles	
	 Intro, Lambda calculus, natural deduction Higher Order Logic, Isar (part 1) 	[1,2] [2,3 ^a]
	 Term rewriting 	[3,4]
→	Proof & Specification Techniques	
	 Inductively defined sets, rule induction 	[4,5]
	 Datatype induction, primitive recursion 	[5,7]
	 General recursive functions, termination proofs 	[7]
	 Proof automation, Isar (part 2) 	[8 ^b]
	 Hoare logic, proofs about programs, invariants 	[8,9]
	 C verification 	[9,10]
	 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Last Time

- → Conditional term rewriting
- → Case Splitting with the simplifier
- → Congruence rules
- → AC Rules
- → Knuth-Bendix Completion (Waldmeister)
- ➔ Orthogonal Rewrite Systems

SPECIFICATION TECHNIQUES

SETS

Sets in Isabelle

Type 'a set: sets over type 'a

→ {}, {
$$e_1, \ldots, e_n$$
}, { $x. P x$ }
→ $e \in A, A \subseteq B$
→ $A \cup B, A \cap B, A - B, -A$
→ $\bigcup x \in A. B x, \bigcap x \in A. B x, \bigcap A, \bigcup A$
→ { $i..j$ }
→ insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set
→ $f'A \equiv \{y. \exists x \in A. y = f x\}$
→

Proofs about Sets

Natural deduction proofs:

- → equalityl: $\llbracket A \subseteq B; B \subseteq A \rrbracket \implies A = B$
- → subsetI: $(\land x. x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- → ... find_theorems

Bounded Quantifiers

$$\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$$

$$\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$$

- → ballI: $(\land x. x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A. P x$
- → bspec: $\llbracket \forall x \in A. P x; x \in A \rrbracket \Longrightarrow P x$
- → bexl: $\llbracket P x; x \in A \rrbracket \implies \exists x \in A. P x$
- → bexE: $\llbracket \exists x \in A. P x; \bigwedge x. \llbracket x \in A; P x \rrbracket \Longrightarrow Q \rrbracket \Longrightarrow Q$

DЕМО

SETS

The Three Basic Ways of Introducing Theorems

→ Axioms:

Example: **axiomatization where** refl: "t = t" **Do not use. Evil. Can make your logic inconsistent.**

→ Definitions:

Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def.

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

The Three Basic Ways of Introducing Types

→ typedecl: by name only

Example: **typedecl** names Introduces new type *names* without any further assumptions

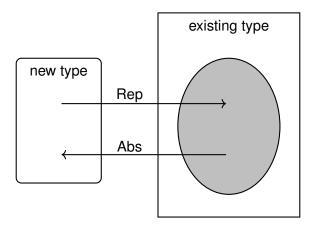
→ type_synonym: by abbreviation

Example: **type_synonym** α rel = " $\alpha \Rightarrow \alpha \Rightarrow$ bool" Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow$ bool Type abbreviations are immediately expanded internally

→ typedef: by definition as a set

Example: **typedef** new_type = "{some set}" <proof> Introduces a new type as a subset of an existing type. The proof shows that the set on the rhs in non-empty.

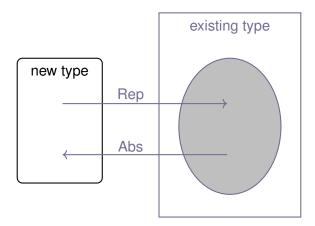
How typedef works



O-ms

11 | COMP4161 | T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How typedef works



12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example: Pairs

 (α,β) Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- Identify subset:

 (α, β) Prod = {f. $\exists a b. f = \lambda(x :: \alpha) (y :: \beta). x = a \land y = b$ }

- ③ We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- ④ We now can:
 - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
 - derive all characteristic theorems
 - forget about Rep/Abs, use characteristic theorems instead

DЕМО

INTRODUCING NEW TYPES

INDUCTIVE DEFINITIONS

Example

 \llbracket

$$\begin{split} \overline{\langle \mathsf{skip}, \sigma \rangle \longrightarrow \sigma} & \frac{\llbracket e \rrbracket \sigma = \mathbf{v}}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \longrightarrow \sigma [\mathsf{x} \mapsto \mathsf{v}]} \\ & \frac{\langle \mathsf{c}_1, \sigma \rangle \longrightarrow \sigma' \quad \langle \mathsf{c}_2, \sigma' \rangle \longrightarrow \sigma''}{\langle \mathsf{c}_1; \mathsf{c}_2, \sigma \rangle \longrightarrow \sigma''} \\ & \frac{\llbracket b \rrbracket \sigma = \mathsf{False}}{\langle \mathsf{while} \ b \ \mathsf{do} \ \mathsf{c}, \sigma \rangle \longrightarrow \sigma} \\ & \underline{b} \rrbracket \sigma = \mathsf{True} \quad \langle \mathsf{c}, \sigma \rangle \longrightarrow \sigma' \quad \langle \mathsf{while} \ b \ \mathsf{do} \ \mathsf{c}, \sigma' \rangle \longrightarrow \sigma''} \\ & \langle \mathsf{while} \ b \ \mathsf{do} \ \mathsf{c}, \sigma \rangle \longrightarrow \sigma'' \end{split}$$

16 | COMP4161 | T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean?

- → $\langle \boldsymbol{c}, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(\boldsymbol{c}, \sigma, \sigma') \in \boldsymbol{E}$
- → relations are sets: E :: (com × state × state) set
- → the rules define a set inductively

But which set?

Simpler Example

$$\frac{n \in N}{n+1 \in N}$$

- → N is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \implies n+1 \in \mathbb{R}$
- \rightarrow \mathbb{N} is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- → Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)
- → Alternative (greatest set) occasionally also useful: coinduction

Rule Induction

$$\frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in N. \ P \ x$$

O-ms

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

INDUCTIVE DEFINITIONS

We have learned today ...

- → Sets
- → Type Definitions
- ➔ Inductive Definitions

