COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

→	Foundations & Principles	
	 Intro, Lambda calculus, natural deduction 	[1,2]
	 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
	Term rewriting	[3,4]
→	Proof & Specification Techniques	
	 Inductively defined sets, rule induction 	[4,5]
	 Datatype induction, primitive recursion 	[5,7]
	General recursive functions, termination proofs	[7]
	 Proof automation, Isar (part 2) 	[8 ^b]
	 Hoare logic, proofs about programs, invariants 	[8,9]
	C verification	[9,10]
	 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

➔ Equations and Term Rewriting

➔ Equations and Term Rewriting

- ➔ Equations and Term Rewriting
- → Confluence and Termination of reduction systems

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

 \rightarrow *l* \longrightarrow *r* **applicable** to term *t*[*s*]

→ I → r applicable to term t[s] if there is substitution σ such that σ I = s

- → I → r applicable to term t[s] if there is substitution σ such that σ I = s
- → Result: $t[\sigma r]$

- → I → r applicable to term t[s] if there is substitution σ such that σ I = s
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

- → I → r applicable to term t[s] if there is substitution σ such that σ I = s
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \rightarrow n$ **Term:** a + (0 + (b + c))

- → I → r applicable to term t[s] if there is substitution σ such that σ I = s
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \rightarrow n$ **Term:** a + (0 + (b + c))**Substitution:** $\sigma = \{n \mapsto b + c\}$

- → I → r applicable to term t[s] if there is substitution σ such that σ I = s
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \rightarrow n$ Term: a + (0 + (b + c))Substitution: $\sigma = \{n \mapsto b + c\}$ Result: a + (b + c)

Conditional Term Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

Conditional Term Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow I = r$$

is **applicable** to term t[s] with σ if

 $\rightarrow \sigma I = s$ and

→ $\sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

ि तज

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma " $f x = g x \land g x = f x \Longrightarrow f x = 2$ "

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma " $f x = g x \land g x = f x \Longrightarrow f x = 2$ "

simp
(simp (no_asm))
(simp (no_asm_use))
(simp (no_asm_simp))

use and simplify assumptions ignore assumptions simplify, but do not use assumptions use, but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\neg A \quad \mapsto \quad A = False$$

$$A \rightarrow B \quad \mapsto \quad A \Longrightarrow B$$

$$A \wedge B \quad \mapsto \quad A, B$$

$$\forall x. \ A \ x \quad \mapsto \quad A \ ?x$$

$$A \quad \mapsto \quad A = True$$

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = False \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \land B & \mapsto & A, B \\ \forall x. \ A \ x & \mapsto & A \ ?x \\ A & \mapsto & A = True \end{array}$$

Example:

$$(p \longrightarrow q \land \neg r) \land s$$

 \mapsto

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = False \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \land B & \mapsto & A, B \\ \forall x. \ A \ x & \mapsto & A \ ?x \\ A & \mapsto & A = True \end{array}$$

Example:
$$(p \longrightarrow q \land \neg r) \land s$$

 \mapsto
 $p \Longrightarrow q = True$ $p \Longrightarrow r = False$ $s = True$

7 | COMP4161 | T Sewell, M Tanaka, R Sison CC-BY-4.0 License

$$P \text{ (if } A \text{ then } s \text{ else } t)$$

$$\stackrel{=}{(A \longrightarrow P s) \land (\neg A \longrightarrow P t)}$$

$$P (\text{if } A \text{ then } s \text{ else } t)$$

$$=$$

$$(A \longrightarrow P s) \land (\neg A \longrightarrow P t)$$
Automatic

P (if A then s else t) $= (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$ Automatic

$$P (\text{case } e \text{ of } 0 \Rightarrow a | \text{Suc } n \Rightarrow b)$$

=
$$(e = 0 \longrightarrow P a) \land (\forall n. e = \text{Suc } n \longrightarrow P b)$$

P (if A then s else t) $= (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$ Automatic

$$P (\text{case } e \text{ of } 0 \Rightarrow a | \text{Suc } n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P a) \land (\forall n. \ e = \text{Suc } n \longrightarrow P b)$$
Manually: apply (simp split: nat.split)

P (if A then s else t) $= (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$ Automatic

$$P (\text{case } e \text{ of } 0 \Rightarrow a | \text{Suc } n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P a) \land (\forall n. e = \text{Suc } n \longrightarrow P b)$$
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

TS

10 | COMP4161 | T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

TS

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting. **Example**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$ **Read**: to simplify $P \longrightarrow Q$

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

 $\textbf{Example:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Read: to simplify $P \longrightarrow Q$

➔ first simplify P to P'

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Read: to simplify $P \longrightarrow Q$

- ➔ first simplify P to P'
- → then simplify Q to Q' using P' as assumption

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Read: to simplify $P \longrightarrow Q$

- → first simplify P to P'
- → then simplify Q to Q' using P' as assumption
- \Rightarrow the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj**_**cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj**_**cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else: **if_cong**: $[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$ (if *b* then *x* else *y*) = (if *c* then *u* else *v*)

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj**_**cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else: **if_cong**: $[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$ (if *b* then *x* else *y*) = (if *c* then *u* else *v*)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if *b* then *x* else *y*) = (if *c* then *x* else *y*)

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj**_**cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else: **if_cong**: $[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$ (if *b* then *x* else *y*) = (if *c* then *u* else *v*)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if *b* then *x* else *y*) = (if *c* then *x* else *y*)

→ declare own congruence rules with [cong] attribute

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj**_**cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else: **if_cong**: $[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$ (if *b* then *x* else *y*) = (if *c* then *u* else *v*)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if *b* then *x* else *y*) = (if *c* then *x* else *y*)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj**_**cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:

if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$

(if *b* then *x* else *y*) = (if *c* then *u* else *v*)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if *b* then *x* else *y*) = (if *c* then *x* else *y*)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]
- → use locally with e.g. **apply** (simp cong: <rule>)

Problem: $x + y \longrightarrow y + x$ does not terminate

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example:

Problem: $x + y \longrightarrow y + x$ does not terminate

- **Solution:** use permutative rules only if term becomes lexicographically smaller.
- **Example:** $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas mult_ac sort any product (*)
- **Example:** apply (simp add: add_ac) yields $(b+c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b+c)$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

13 | COMP4161 | T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Last time: confluence in general is undecidable.

15 | COMP4161 | T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable!

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables. They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ Critical pairs:

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ Critical pairs:

$$\begin{array}{ll} (1)+(3) & \{x \mapsto g \ z\} & a \stackrel{(1)}{\leftarrow} f \ (g \ z) & \stackrel{(3)}{\rightarrow} b \\ (3)+(2) & \{z \mapsto y\} & b \stackrel{(3)}{\leftarrow} f \ (g \ y) & \stackrel{(2)}{\rightarrow} f \ b \end{array}$$

(1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

,

16 | COMP4161 | T Sewell, M Tanaka, R Sison CC-BY-4.0 License

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules!

,

ि तज

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

,

ि तज

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Example:

(1)+(3) {
$$x \mapsto g z$$
} $a \xleftarrow{(1)} f(g z) \xrightarrow{(3)} b$
shows that $a = b$ (because $a \xleftarrow{*} b$),

16 | COMP4161 | T Sewell, M Tanaka, R Sison CC-BY-4.0 License

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Example:

(1)+(3) $\{x \mapsto g z\}$ $a \stackrel{(1)}{\leftarrow} f(g z) \stackrel{(3)}{\longrightarrow} b$ shows that a = b (because $a \stackrel{*}{\leftarrow} b$), so we add $a \longrightarrow b$ as a rule

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Example:

(1)+(3) $\{x \mapsto g z\}$ $a \stackrel{(1)}{\leftarrow} f(g z) \stackrel{(3)}{\longrightarrow} b$ shows that a = b (because $a \stackrel{*}{\leftarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

Definitions:

Definitions: A rule $I \rightarrow r$ is left-linear if no variable occurs twice in *I*.

Definitions:

A rule $l \rightarrow r$ is left-linear if no variable occurs twice in *l*. A rewrite system is left-linear if all rules are.

Definitions: A rule $l \rightarrow r$ is left-linear if no variable occurs twice in *I*. A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Definitions: A rule $l \rightarrow r$ is left-linear if no variable occurs twice in *l*. A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Definitions: A rule $l \rightarrow r$ is left-linear if no variable occurs twice in *l*. A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

→ Conditional term rewriting

19 | COMP4161 | T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned today ...

- → Conditional term rewriting
- → Congruence rules

We have learned today ...

- → Conditional term rewriting
- → Congruence rules
- → AC rules

O TIS
We have learned today ...

- → Conditional term rewriting
- → Congruence rules
- → AC rules
- ➔ More on confluence

0-ng