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Content

➜ Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

➜ Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c ]

aa1 due; ba2 due; ca3 due
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Last Time

➜ Equations and Term Rewriting
➜ Confluence and Termination of reduction systems
➜ Term Rewriting in Isabelle
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Applying a Rewrite Rule

➜ l −→ r applicable to term t [s]
if there is substitution σ such that σ l = s

➜ Result: t [σ r ]
➜ Equationally: t [s] = t [σ r ]

Example:
Rule: 0 + n −→ n
Term: a + (0 + (b + c))
Substitution: σ = {n 7→ b + c}
Result: a + (b + c)
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Conditional Term Rewriting

Rewrite rules can be conditional:

[[P1 . . .Pn]] =⇒ l = r

is applicable to term t [s] with σ if
➜ σ l = s and
➜ σ P1, . . . , σ Pn are provable by rewriting.
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Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma ”f x = g x ∧ g x = f x =⇒ f x = 2¨

simp use and simplify assumptions
(simp (no asm)) ignore assumptions
(simp (no asm use)) simplify, but do not use assumptions
(simp (no asm simp)) use, but do not simplify assumptions
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Preprocessing

Preprocessing (recursive) for maximal simplification power:

¬A 7→ A = False
A −→ B 7→ A =⇒ B

A ∧ B 7→ A, B
∀x . A x 7→ A ?x

A 7→ A = True

Example: (p −→ q ∧ ¬r) ∧ s

7→

p =⇒ q = True p =⇒ r = False s = True
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DEMO



Case splitting with simp

P (if A then s else t)
=

(A −→ P s) ∧ (¬A −→ P t)
Automatic

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P a) ∧ (∀n. e = Suc n −→ P b)
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split
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Congruence Rules

congruence rules are about using context

Example: in P −→ Q we could use P to simplify terms in Q

For =⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
[[P = P ′;P ′ =⇒ Q = Q′]] =⇒ (P −→ Q) = (P ′ −→ Q′)

Read: to simplify P −→ Q
➜ first simplify P to P ′

➜ then simplify Q to Q′ using P ′ as assumption
➜ the result is P ′ −→ Q′
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More Congruence

Sometimes useful, but not used automatically (slowdown):
conj cong: [[P = P ′;P ′ =⇒ Q = Q′]] =⇒ (P ∧Q) = (P ′ ∧Q′)

Context for if-then-else:
if cong: [[b = c; c =⇒ x = u;¬c =⇒ y = v ]] =⇒

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if weak cong:
b = c =⇒ (if b then x else y) = (if c then x else y)

➜ declare own congruence rules with [cong] attribute
➜ delete with [cong del]
➜ use locally with e.g. apply (simp cong: <rule>)
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Ordered rewriting

Problem: x + y −→ y + x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:
• lemmas add ac sort any sum (+)
• lemmas mult ac sort any product (∗)

Example: apply (simp add: add ac) yields
(b + c) + a ; · · ·; a + (b + c)
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AC Rules

Example for associative-commutative rules:
Associative: (x ⊙ y)⊙ z = x ⊙ (y ⊙ z)
Commutative: x ⊙ y = y ⊙ x

These 2 rules alone get stuck too early (not confluent).

Example: (z ⊙ x)⊙ (y ⊙ v)
We want: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (x ⊙ (y ⊙ z))
We get: (z ⊙ x)⊙ (y ⊙ v) = v ⊙ (y ⊙ (x ⊙ z))

We need: AC rule x ⊙ (y ⊙ z) = y ⊙ (x ⊙ z)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly
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DEMO



Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l1 unifies with

l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b
Critical pairs:

(1)+(3) {x 7→ g z} a
(1)←− f (g z)

(3)−→ b

(3)+(2) {z 7→ y} b
(3)←− f (g y)

(2)−→ f b
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Completion

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)←− f (g z)

(3)−→ b
shows that a = b (because a ∗←→ b), so we add a −→ b as a
rule

This is the main idea of the Knuth-Bendix completion algorithm.
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DEMO: WALDMEISTER



Orthogonal Rewriting Systems

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l .
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical
pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages
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We have learned today ...

➜ Conditional term rewriting
➜ Congruence rules
➜ AC rules
➜ More on confluence
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