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Content

=» Foundations & Principles
¢ Intro, Lambda calculus, natural deduction
¢ Higher Order Logic, Isar (part 1)
e Term rewriting

-» Proof & Specification Techniques

¢ Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)
Hoare logic, proofs about programs, invariants
C verification
Practice, questions, exam prep
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Last Time

=» Equations and Term Rewriting
=» Confluence and Termination of reduction systems
=» Term Rewriting in Isabelle
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Applying a Rewrite Rule

=> | — r applicable to term t[s]
if there is substitution ¢ such thato / = s

=» Result: t[o 1]
=» Equationally: {[s] = {[o 1]

Example:
Rule:0+n—n
Term: a+ (0+ (b+ ¢))
Substitution: 0 = {n— b+ c}
Result: a+ (b+c¢)
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Conditional Term Rewriting

Rewrite rules can be conditional:
[Pi...Pil=1I=r

is applicable to term {[s] with ¢ if
= o/=sand
= o Py, ..., 0 P,are provable by rewriting.
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Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma’ fx=gxAgx=Ffx—=—fx=2"

simp use and simplify assumptions

(simp (no_asm)) ignore assumptions

(simp (no_asm_use))  simplify, but do not use assumptions
(simp (no_asm_simp)) use, but do not simplify assumptions
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Preprocessing

Preprocessing (recursive) for maximal simplification power:

—-A
A— B
AANB
Vx. Ax
A

Example:

p = q= True
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USSR

A = False
A— B
A B
A?x

A= True

(b—qA-r)As

p = r = False

s = True
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Case splitting with simp

P (if Athen s else )

(A— PS)A(-A— P 1)
Automatic

P (caseeof0 = a|Sucn = b)

(e=0— Pa)/\(VrT. e=Sucn— Pb)
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split
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Congruence Rules

congruence rules are about using context

Example: in P — Q we could use P to simplify terms in Q

For = hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
[P=P;P=Q=Q]—= (P— Q=P — Q)
Read: to simplify P — Q

=> first simplify P to P’

=» then simplify Q to Q' using P’ as assumption

= theresultis P — Q'
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More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P; P = Q=Q]= (PANQ)=(P ANQ)

Context for if-then-else:
ifcong: [b=cc=x=u-Cc=y=Vv]=
(if bthen x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if weak _cong:
b= c = (if bthen x else y) = (if c then x else y)

=» declare own congruence rules with [cong] attribute
=» delete with [cong del]
=» use locally with e.g. apply (simp cong: <rule>)
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Ordered rewriting

Problem: x + y — y + x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b+a~a+bbutnota+b~ b+ a

For types nat, int etc:
e lemmas add_ac sort any sum (+)
e lemmas mult_ac sort any product (x)

Example: apply (simp add: add_ac) yields
(b+c)+a~---~a+(b+c)
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AC Rules

Example for associative-commutative rules:
Associative: (xOy)0z=x0(y0o 2)
Commutative: xoy=yox

These 2 rules alone get stuck too early (not confluent).

Example: (zox)o(yov)

Wewant: (zox)o(yov)=voxoe(yoz)
We get: (zox)oyov)=vo(yo(xoez2)
Weneed: ACrule xo(yoz)=yo((x0o2)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly
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Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.
Definition:

Let s — r and b — r» be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of /; unifies with
I2.

Example:
Rules: (1)fx—a @2)gy—b @B)f(gz)—b
Critical pairs:

(1)+(3) {x— g2z} a<— f(gz) ﬂb

@)+2) {z—y) b& fgy) Brp
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Completion

MNfx—a (2ygy—b @B)Ff(gz)—b
is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

1+@) {(x—gz) all fgz) Do
shows that a = b (because a «— b), sowe add a — bas a
rule

This is the main idea of the Knuth-Bendix completion algorithm.
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Orthogonal Rewriting Systems

Definitions:
A rule | — r is left-linear if no variable occurs twice in /.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical
pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages
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We have learned today ...

=» Conditional term rewriting
-» Congruence rules

-> AC rules

=» More on confluence
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