COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

→	Foundations & Principles	
	 Intro, Lambda calculus, natural deduction 	[1,2]
	 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
	Term rewriting	[3,4]
→	Proof & Specification Techniques	
	 Inductively defined sets, rule induction 	[4,5]
	 Datatype induction, primitive recursion 	[5,7]
	 General recursive functions, termination proofs 	[7]
	 Proof automation, Isar (part 2) 	$[8^{b}]$
	 Hoare logic, proofs about programs, invariants 	[8,9]
	C verification	[9,10]
	 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Last Time on HOL

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation

TERM REWRITING

The Problem

Given a set of equations

$$\begin{aligned}
I_1 &= r_1 \\
I_2 &= r_2 \\
&\vdots \\
I_n &= r_n
\end{aligned}$$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → Theorem Proving (dealing with equations, simplifying statements)

Term Rewriting: The Idea

use equations as reduction rules

$$\begin{array}{c} I_1 \longrightarrow r_1 \\ I_2 \longrightarrow r_2 \\ & \vdots \\ I_n \longrightarrow r_n \end{array}$$
 decide $I=r$ by deciding $I \stackrel{*}{\longleftrightarrow} r$

Arrow Cheat Sheet

$$\begin{array}{lll} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & \text{identity} \\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & \text{n+1 fold composition} \\ \stackrel{+}{\longrightarrow} & = & \bigcup_{i>0} \stackrel{i}{\longrightarrow} & \text{transitive closure} \\ \stackrel{*}{\longrightarrow} & = & \stackrel{+}{\longrightarrow} \cup \stackrel{0}{\longrightarrow} & \text{reflexive transitive closure} \\ \stackrel{=}{\longrightarrow} & = & \longrightarrow \cup \stackrel{0}{\longrightarrow} & \text{reflexive closure} \\ \stackrel{-1}{\longrightarrow} & = & \{(y,x)|x\longrightarrow y\} & \text{inverse} \\ \longleftarrow & = & \stackrel{-1}{\longrightarrow} & \text{inverse} \\ \longleftarrow & = & \longleftarrow \cup \longrightarrow & \text{symmetric closure} \\ \stackrel{*}{\longleftarrow} & = & \bigcup_{i>0} \stackrel{i}{\longleftarrow} & \text{transitive symmetric closure} \\ \stackrel{*}{\longleftarrow} & = & \stackrel{+}{\longleftarrow} \cup \stackrel{0}{\longleftarrow} & \text{reflexive transitive symmetric closure} \\ \stackrel{*}{\longleftarrow} & = & \stackrel{+}{\longleftarrow} \cup \stackrel{0}{\longleftarrow} & \text{reflexive transitive symmetric closure} \\ \end{array}$$

How to Decide $/ \stackrel{*}{\longleftrightarrow} r$

Same idea as for β **:** look for n such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable n? **No!**

Example:

Rules:
$$f x \longrightarrow a$$
, $g x \longrightarrow b$, $f (g x) \longrightarrow b$
 $f x \stackrel{*}{\longleftrightarrow} g x$ because
 $f x \longrightarrow a \longleftarrow f (g x) \longrightarrow b \longleftarrow g x$

But: $f \times A \longrightarrow a$ and $g \times A \longrightarrow b$ and $g \times A \longrightarrow b$ and $g \times A$

Works only for systems with Church-Rosser property:

$$I \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ I \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$$

Fact: → is Church-Rosser iff it is confluent.

Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination ⇒ confluence

Termination

- → is **terminating** if there are no infinite reduction chains
- → is **normalizing** if each element has a normal form
- → is convergent if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

When is \longrightarrow Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > \ldots$)

Example:
$$f(gx) \longrightarrow gx$$
, $g(fx) \longrightarrow fx$

This system always terminates. Reduction order:

$$s <_r t$$
 iff $size(s) < size(t)$ with $size(s) =$ number of function symbols in s

- ① Both rules always decrease *size* by 1 when applied to any term *t*
- ② $<_r$ is well founded, because < is well founded on $\mathbb N$

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves,

rather than their application to an arbitrary term t.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

$$g x < f (g x)$$
 and $f x < g (f x)$

Requires

u to become smaller whenever any subterm of *u* is made smaller.

Formally:

Requires < to be **monotonic** with respect to the structure of terms:

$$s < t \longrightarrow u[s] < u[t].$$

True for most orders that don't treat certain parts of terms as

Example Termination Proof

Problem: Rewrite formulae containing \neg , \wedge , \vee and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp:
$$(A \longrightarrow B) = (\neg A \lor B)$$

→ Push ¬s down past other operators:

notnot:
$$(\neg \neg P) = P$$

notand:
$$(\neg(A \land B)) = (\neg A \lor \neg B)$$

notor:
$$(\neg(A \lor B)) = (\neg A \land \neg B)$$

We show that the rewrite system defined by these rules is terminating.

Order on Terms

Each time one of our rules is applied, either:

- → an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- \rightarrow num_imps s < num_imps t, or
- → num_imps $s = \text{num}_i \text{mps } t \land \text{osize } s < \text{osize } t$.

Let:

- → $s <_i t \equiv \text{num_imps } s < \text{num_imps } t$ and
- → $s <_n t \equiv \text{osize } s < \text{osize } t$

Then $<_i$ and $<_n$ are both well-founded orders (since both return nats).

 $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

Order Decreasing

imp clearly decreases num_imps.

osize adds up all non-¬ operators and variables/constants, weights each one according to its depth within the term.

osize'
$$c$$
 $x = 2^x$
osize' $(\neg P)$ $x = \text{osize'} \ P (x + 1)$
osize' $(P \land Q)$ $x = 2^x + (\text{osize'} \ P (x + 1)) + (\text{osize'} \ Q (x + 1))$
osize' $(P \lor Q)$ $x = 2^x + (\text{osize'} \ P (x + 1)) + (\text{osize'} \ Q (x + 1))$
osize' $(P \longrightarrow Q)$ $x = 2^x + (\text{osize'} \ P (x + 1)) + (\text{osize'} \ Q (x + 1))$
osize P = osize' P 0

The other rules decrease the depth of the things osize counts, so decrease osize.

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called **Simplifier**

apply simp

uses simplification rules

→ (almost) blindly from left to right

→ until no rule is applicable.

termination: not guaranteed

(may loop)

confluence: not guaranteed

(result may depend on which rule is used first)

Control

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally:

```
apply (simp add: <rules>) and apply (simp del: <rules>)
```

→ Using only the specified set of equations:

```
apply (simp only: <rules>)
```

DEMO

We have seen today...

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Exercises

→ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.

