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=» Foundations & Principles

Intro, Lambda calculus, natural deduction
Higher Order Logic, Isar (part 1)
Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep
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More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe
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More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated
Automated methods (fast, blast, clarify etc) are not hardwired.
Safe/unsafe intro/elim rules can be declared.
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More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Automated methods (fast, blast, clarify etc) are not hardwired.

Safe/unsafe intro/elim rules can be declared.

Syntax:
[<kind>1] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules
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More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated
Automated methods (fast, blast, clarify etc) are not hardwired.
Safe/unsafe intro/elim rules can be declared.

Syntax:
[<kind>1] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only
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More on Automation

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated
Automated methods (fast, blast, clarify etc) are not hardwired.
Safe/unsafe intro/elim rules can be declared.

Syntax:
[<kind>1] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules
Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

Example:
declare attribute globally declare conjl [intro!] allE [elim]
remove attribute globally declare allE [rule del]
use locally apply (blast intro: somel)
delete locally apply (blast del: conjl)
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DEMO: AUTOMATION



Exercises

=» derive the classical contradiction rule (=P = False) = P in Isabelle
=» define nor and nand in Isabelle

-» show norx x = nand x x

=» derive safe intro and elim rules for them

=» use these in an automated proof of nor x x = nand x x
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DEFINING HIGHER ORDER LOGIC



What is Higher Order Logic?

=> Propositional Logic:

® no quantifiers
e all variables have type bool
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What is Higher Order Logic?

=> Propositional Logic:

® no quantifiers
e all variables have type bool

=> First Order Logic:

e quantification over values, but not over functions and predicates,
e terms and formulas syntactically distinct
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What is Higher Order Logic?

=> Propositional Logic:
® no quantifiers
e all variables have type bool
=> First Order Logic:
e quantification over values, but not over functions and predicates,
e terms and formulas syntactically distinct
-» Higher Order Logic:
e quantification over everything, including predicates
e consistency by types
e formula = term of type bool
e definition built on A~ with certain default types and constants
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Defining Higher Order Logic

Default types:
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Defining Higher Order Logic

Default types:

bool
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Defining Higher Order Logic

Default types:

bool =
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bool = ind

=» bool sometimes called o
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Default Constants:

— = bool = bool = bool
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Defining Higher Order Logic

Default types:
bool = ind
-» bool sometimes called o

-» = sometimes called fun

Default Constants:

— = bool = bool = bool
= o o= o= bool
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Defining Higher Order Logic

Default types:

bool = ind

=» bool sometimes called o
-» = sometimes called fun

Default Constants:

— = bool = bool = bool
- o o= o= bool
€ . (a= bool) = «a
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Higher Order Abstract Syntax

Problem: Define syntax for binders like Vv, 3, ¢
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Higher Order Abstract Syntax
Problem: Define syntax for binders like Vv, 3, ¢

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.
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Problem: Define syntax for binders like Vv, 3, ¢

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

But: Already have binder, substitution, o conversion in meta logic

A
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Higher Order Abstract Syntax

Problem: Define syntax for binders like Vv, 3, ¢

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

But: Already have binder, substitution, o conversion in meta logic

A

So: Use ) to encode all other binders.
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Higher Order Abstract Syntax
Example:

ALL :: (o = bool) = bool

HOAS usual syntax
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Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

ALL (Ax. x = 2)
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Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

ALL (Ax. x = 2) Vx.x =2
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Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

ALL (Ax. x = 2) Vx.x =2
ALL P
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Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax

ALL (Ax. x = 2) Vx.x =2
ALL P vx. P x
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Higher Order Abstract Syntax

Example:
ALL :: (o = bool) = bool

HOAS usual syntax
ALL (Ax. x = 2) Vx.x =2
ALL P vx. P x

Isabelle can translate usual binder syntax into HOAS.

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License




Side Track: Syntax Declarations

= mixfix:
consts drvbl :: ¢t = ¢t = fm= bool ("_,_ F ")
Legal syntax now: ', 11+ F
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Side Track: Syntax Declarations

= mixfix:
consts drvbl :: ¢t = ¢t = fm= bool ("_,_ F ")
Legal syntax now: I, 11+ F

=» priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ¢t = ¢t = fm = bool ("_,- + " [30,0,20] 60)
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Side Track: Syntax Declarations

= mixfix:
consts drvbl :: ¢t = ¢t = fm= bool ("_,_ F ")
Legal syntax now: I, 11+ F

=» priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ¢t = ¢t = fm = bool ("_,- + " [30,0,20] 60)

=>» infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr" V" 30)
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Side Track: Syntax Declarations

= mixfix:
consts drvbl :: ¢t = ¢t = fm= bool ("_,_ F ")
Legal syntax now: I, 11+ F

=» priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ¢t = ¢t = fm = bool ("_,- + " [30,0,20] 60)

=>» infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr" V" 30)

=>» binders: declaration must be of the form
c: (1= m) =7 (binder"B" < p>)
B x. P x translated into ¢ P (and vice versa)
Example ALL :: (o = bool) = bool (binder"V" 10)
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Side Track: Syntax Declarations

= mixfix:
consts drvbl :: ¢t = ¢t = fm= bool ("_,_ F ")
Legal syntax now: I, 11+ F

=» priorities:
pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ¢t = ¢t = fm = bool ("_,- + " [30,0,20] 60)

=>» infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr" V" 30)

=» binders: declaration must be of the form
c: (1= m) =7 (binder"B" < p>)
B x. P x translated into ¢ P (and vice versa)
Example ALL :: (o = bool) = bool (binder"V" 10)

More in Isabelle/Isar Reference Manual (8.2)
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Back to HOL

Base: bool, =, ind =, —€

And the rest is
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Back to HOL

Base: bool, =, ind =, —€

And the rest is definitions:

True
All P
Ex P
False
-P
PAQ
PvQ
IfPxy
inj f
surj f
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Back to HOL

Base: bool, =, ind =, —€

And the rest is definitions:

True (Ax = bool. x) = (Ax. X)
All P
Ex P
False
-P
PAQ
PvQ
IfPxy
inj f
surj f
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Back to HOL

Base: bool, =, ind =, —€

And the rest is definitions:

True (Ax = bool. x) = (Ax. X)
All P P = (A\x. True)

Ex P
False
-P
PAQ
PvQ
fPxy
inj f
surj f
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Back to HOL

Base: bool, =, ind =, —€

And the rest is definitions:

True = (M bool. x) = (Ax. x)

All P = P=(\x.True)

Ex P = VQ (W.Px— Q) —Q

False = VP.P

-P = P — False

PAQ = YVR(P—Q—R)—R

PvaQ = VR(P—R —(Q—R) —AR

fPxy = SOMEz. (P=Tue—z=x)A(P=False —z=y)
inj f = Yxy. fx=fy—x=y

surj f = Vy.Ix.y=fFfx
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The Axioms of HOL

s=t Ps
- refl Bi subst
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The Axioms of HOL

s=t Ps AXx. fx=gx

7= refl Bi subst O f x) = (Ox. g X) ext
P= Q. P—Q P
P—ao™ —aq ™
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The Axioms of HOL

s=t Ps AXx. fx=gx

7= refl Bi subst O f x) = (Ox. g X) ext
P= Q. P—Q P
P>a™ o ™

P—=0 —=@—=pP =pP=q
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The Axioms of HOL

s=t Ps AXx. fx=gx

7= refl Bi subst O f x) = (Ox. g X) ext
P= Q. P—Q P
P—ao™ —aq ™

P—=0 —=@—=pP =pP=q

P = True v P = False True.or_Faise
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The Axioms of HOL

s=t Ps AXx. fx=gx

7= refl Bi subst O f x) = (Ox. g X) ext
P= Q. P—Q P
P>a™ o ™

P—=0 —=@—=pP =pP=q

P = True v P = False True.or_Faise

P 7x
P (SOME x. P x)

somel
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The Axioms of HOL

s=t Ps AXx. fx=gx

7= refl Bi subst O f x) = (Ox. g X) ext
P= Q. P—Q P
P>a™ o ™

P—=0 —=@—=pP =pP=q

P = True v P = False True.or_Faise

P 7x
P (SOME x. P x)

somel

3 ind = ind. inj T A —sun 7 Y
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That’s it.

=» 3 basic constants
=» 3 basic types
=» 9 axioms
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That’s it.

=» 3 basic constants
=» 3 basic types
=» 9 axioms

With this you can define and derive all the rest.
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That’s it.

=» 3 basic constants
=» 3 basic types
-» 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

X - . .
he_eq_ |
= y eq_reflection (THEx. x—a) - a the_eq_trivia
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DEMO:
THE DEFINITIONS IN ISABELLE



Deriving Proof Rules

In the following, we will




Deriving Proof Rules

In the following, we will
=» look at the definitions in more detail
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Deriving Proof Rules

In the following, we will
=>» look at the definitions in more detail
=» derive the traditional proof rules from the axioms in Isabelle
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Deriving Proof Rules

In the following, we will
=>» look at the definitions in more detail
=» derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name :]
assumes [namey :] “< prop >1
assumes [name, :| “< prop >»

”

shows “< prop >" < proof >
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Deriving Proof Rules

In the following, we will
=>» look at the definitions in more detail
=» derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name :]
assumes [namey :] “< prop >1”
assumes [name; :| “< prop >»"

shows “< prop >" < proof >

proves: [ < prop >1; < prop >z; ...]| = < prop >
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True

consts True :: bool
True = (Ax :: bool. x) = (Ax. x)

Intuition:
right hand side is always true
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True

consts True :: bool
True = (Ax :: bool. x) = (Ax. x)

Intuition:
right hand side is always true

Proof Rules:

Tue Truel

Proof:

refl

(Ax i bool. x) = (Ax. X)
unfold True_def

True
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DEMO



Universal Quantifier

consts ALL :: (o = bool) = bool
ALLP = P =(\x.True)

Intuition:
=» ALL Pis Higher Order Abstract Syntax for Vx. P x.
=» Pis afunction that takes an x and yields a truth value.
=» ALL P should be true iff P yields true for all x, i.e.
if it is equivalent to the function Ax. True.
Proof Rules:
Ax. Px vYx.Px P?x=—R

m alll R alle

Proof: Isabelle Demo
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False

consts False :: bool/
False = VP.P

Intuition:
Everything can be derived from False.

Proof Rules:

False FalseE

P True # False

Proof: Isabelle Demo
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Negation

consts Not :: bool = bool (- )
-P =P —: False

Intuition:
Try P = True and P = False and the traditional truth table for —.

Proof Rules:

A = False notl -A A
-A P

notE

Proof: Isabelle Demo
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Existential Quantifier

consts EX :: (a = bool) = bool
EXP = VQ. (Vx.Px— Q) — Q

Intuition:
=> EX Pis HOAS for 3x. P x. (like V)
=» Right hand side is characterization of 3 with V and —
=» Note that inner V binds wide: (Vx. P x — Q)
-» Remember lemma from last time: (Vx. P x — Q) = ((3x. P x) — Q)

Proof Rules:
P 7x Ix.Px Ax.Px=R

Ix. P x ex R exE
Proof: Isabelle Demo
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Conjunction
consts And :: bool = bool = bool (- A _)
PANQ=VR.(P—Q—R)—R

Intuition:

=» Mirrors proof rules for A
=>» Try truth table for P, Q, and R

Proof Rules:

A B ) AANB [ABl=C
A/\Bconjl C

Proof: Isabelle Demo
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Disjunction

consts Or :: bool = bool = bool (- V )
PvQ=vYR.(P—R)—(Q—R)—R

Intuition:
=» Mirrors proof rules for v (case distinction)

=>» Try truth table for P, Q, and R
Proof Rules:

A
AVB A\/B

AvB A=—C B=—C

disjl1/2 :

Proof: Isabelle Demo
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If-Then-Else
consts If :: bool = a = a = « (if-then _else )
fPxy = SOME z. (P=True — z=x) A (P =False — z =)

Intuition:

=» for P = True, right hand side collapses to SOME z. z = x
=» for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

if Truethenselset=s ifrue if False then selse t =t ifFalse

Proof: Isabelle Demo
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THAT wAs HOL



We have learned today ...

-» More automation




We have learned today ...

-» More automation
=» Defining HOL
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We have learned today ...

=» More automation
=» Defining HOL
=>» Higher Order Abstract Syntax
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We have learned today ...

=» More automation

=» Defining HOL

=>» Higher Order Abstract Syntax
=» Deriving proof rules
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