COMP4161 Advanced Topics in Software Verification

HOL

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Content

→ Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
 C verification 	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Last time: safe and unsafe, heuristics: use safe before unsafe

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Automated methods (fast, blast, clarify etc) are not hardwired. Safe/unsafe intro/elim rules can be declared.

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Automated methods (fast, blast, clarify etc) are not hardwired. Safe/unsafe intro/elim rules can be declared.

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Automated methods (fast, blast, clarify etc) are not hardwired. Safe/unsafe intro/elim rules can be declared.

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

Last time: safe and unsafe, heuristics: use safe before unsafe

This can be automated

Automated methods (fast, blast, clarify etc) are not hardwired. Safe/unsafe intro/elim rules can be declared.

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

[<kind>] for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

Example:

declare attribute globally declare conjl [intro!] allE [elim] remove attribute globally declare allE [rule del]

use locally

delete locally

apply (blast intro: somel)

apply (blast del: conil)

DEMO: AUTOMATION

Exercises

- \rightarrow derive the classical contradiction rule ($\neg P \Longrightarrow False$) $\Longrightarrow P$ in Isabelle
- → define nor and nand in Isabelle
- \rightarrow show nor x x = nand x x
- → derive safe intro and elim rules for them
- \rightarrow use these in an automated proof of nor x x = nand x x

DEFINING HIGHER ORDER LOGIC

What is Higher Order Logic?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

What is Higher Order Logic?

→ Propositional Logic:

- no quantifiers
- · all variables have type bool

→ First Order Logic:

- quantification over values, but not over functions and predicates,
- terms and formulas syntactically distinct

What is Higher Order Logic?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

→ First Order Logic:

- quantification over values, but not over functions and predicates,
- terms and formulas syntactically distinct

→ Higher Order Logic:

- quantification over everything, including predicates
- consistency by types
- formula = term of type bool
- definition built on λ^{\rightarrow} with certain default types and constants

Default types:

Default types:

bool

Default types:

bool
$$_{-} \Rightarrow _{-}$$

Default types:

bool $_{-} \Rightarrow _{-}$ ind

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- → ⇒ sometimes called *fun*

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- → ⇒ sometimes called fun

Default Constants:

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- → ⇒ sometimes called fun

Default Constants:

$$\longrightarrow$$
 :: bool \Rightarrow bool \Rightarrow bool

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- → ⇒ sometimes called fun

Default Constants:

 \longrightarrow :: bool \Rightarrow bool \Rightarrow bool

= :: $\alpha \Rightarrow \alpha \Rightarrow bool$

Default types:

bool $_{-} \Rightarrow _{-}$ ind

- → bool sometimes called o
- → ⇒ sometimes called *fun*

Default Constants:

 \longrightarrow :: bool \Rightarrow bool \Rightarrow bool

= :: $\alpha \Rightarrow \alpha \Rightarrow bool$

 ϵ :: $(\alpha \Rightarrow bool) \Rightarrow \alpha$

Problem: Define syntax for binders like \forall , \exists , ε

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

 λ

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

 λ

So: Use λ to encode all other binders.

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow \mathit{bool}) \Rightarrow \mathit{bool}$$

HOAS

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow \mathit{bool}) \Rightarrow \mathit{bool}$$

HOAS

ALL (
$$\lambda x$$
. $x = 2$)

Example:

ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS

ALL
$$(\lambda x. x = 2)$$
 $\forall x. x = 2$

Example:

ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS

ALL
$$(\lambda x. \ x = 2)$$
 $\forall x. \ x = 2$ ALL P

HOAS

Example:

ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$

usual syntax

ALL $(\lambda x. \ x = 2)$ $\forall x. \ x = 2$ ALL P $\forall x. \ P \ x$

Example:

$$ALL :: (\alpha \Rightarrow bool) \Rightarrow bool$$

Isabelle can translate usual binder syntax into HOAS.

Side Track: Syntax Declarations

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool \ ("_, _ \vdash _")$ Legal syntax now: $\Gamma, \Pi \vdash F$

Side Track: Syntax Declarations

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool \ ("_, _ \vdash _")$ Legal syntax now: $\Gamma, \Pi \vdash F$

→ priorities:

pattern can be annotated with priorities to indicate binding strength **Example:** drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_-, _ \vdash _" [30, 0, 20] 60)

Side Track: Syntax Declarations

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool \ ("_, _ \vdash _")$ Legal syntax now: $\Gamma, \Pi \vdash F$

→ priorities:

pattern can be annotated with priorities to indicate binding strength **Example:** drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_-, _ \vdash _" [30, 0, 20] 60)

→ infixl/infixr: short form for left/right associative binary operators Example: or :: bool ⇒ bool (infixr " ∨ " 30)

Side Track: Syntax Declarations

→ mixfix:

```
consts drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool \ ("\_, \_ \vdash \_")
Legal syntax now: \Gamma, \Pi \vdash F
```

→ priorities:

pattern can be annotated with priorities to indicate binding strength **Example:** drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_,_ \vdash _" [30, 0, 20] 60)

- → infixl/infixr: short form for left/right associative binary operators Example: or :: bool ⇒ bool (infixr " ∨ " 30)
- → binders: declaration must be of the form $c:: (\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3$ (binder "B") B x. P x translated into c P (and vice versa) Example ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ (binder "∀" 10)

Side Track: Syntax Declarations

→ mixfix:

```
consts drvbl :: ct \Rightarrow ct \Rightarrow fm \Rightarrow bool \ ("\_, \_ \vdash \_")
Legal syntax now: \Gamma, \Pi \vdash F
```

→ priorities:

pattern can be annotated with priorities to indicate binding strength **Example:** drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ ("_-, _ \vdash _" [30, 0, 20] 60)

- → infixl/infixr: short form for left/right associative binary operators Example: or :: bool ⇒ bool (infixr " ∨ " 30)
- **→ binders:** declaration must be of the form $c :: (\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3$ (binder "B" < p >) $B \times P \times T$ translated into $C \times P$ (and vice versa) **Example** ALL :: $(\alpha \Rightarrow bool) \Rightarrow bool$ (binder "∀" 10)

More in Isabelle/Isar Reference Manual (8.2)

Base: bool, \Rightarrow , ind =, \longrightarrow , ε

And the rest is

Base: bool, \Rightarrow , ind =, \longrightarrow , ε

And the rest is definitions:

```
True \equiv All P \equiv Ex P \equiv False \neg P \equiv P \land Q \equiv P \lor Q \equiv If P \times y \equiv inj f \equiv surj f \equiv
```

Base: bool, \Rightarrow , ind =, \longrightarrow , ε

And the rest is definitions:

```
\equiv (\lambda x :: bool. x) = (\lambda x. x)
True
All P \equiv
Ex P
False
\neg P
         =
P \wedge Q \equiv
P \lor Q \equiv
If P \times y
ini f
        =
surj f
```

 \equiv

surj f

Base: bool, \Rightarrow , ind =, \longrightarrow , ε

And the rest is definitions:

 \equiv

Base:
$$bool, \Rightarrow, ind =, \longrightarrow, \varepsilon$$

And the rest is definitions:

True
$$\equiv (\lambda x :: bool. \ x) = (\lambda x .: x)$$
All $P \equiv P = (\lambda x. \text{ True})$
Ex $P \equiv \forall Q. \ (\forall x. P \ x \longrightarrow Q) \longrightarrow Q$
False $\equiv \forall P. P$
 $\neg P \equiv P \longrightarrow \text{False}$
 $P \land Q \equiv \forall R. \ (P \longrightarrow Q \longrightarrow R) \longrightarrow R$
 $P \lor Q \equiv \forall R. \ (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$
If $P x y \equiv \text{SOME } z. \ (P = \text{True} \longrightarrow z = x) \land (P = \text{False} \longrightarrow z = y)$
inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$
surj $f \equiv \forall y. \ \exists x. \ y = f \ x$

$$\frac{s=t \ Ps}{Pt} \text{ subst} \qquad \frac{\bigwedge x. \ fx=gx}{(\lambda x. \ fx)=(\lambda x. \ gx)} \text{ ext}$$

refl
$$\frac{s=t}{P} \frac{P}{t} s$$
 subst $\frac{\bigwedge x. f x = g x}{(\lambda x. f x) = (\lambda x. g x)}$ ext $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl $\frac{P \longrightarrow Q}{Q}$ mp

$$\frac{s = t \quad P s}{P t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x = g \ x}{(\lambda x. \ f \ x) = (\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\frac{s = t \quad P \ s}{P \ t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x = g \ x}{(\lambda x. \ f \ x) = (\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \text{ True_or_False}$$

$$\frac{s = t \quad P \ s}{P \ t} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x = g \ x}{(\lambda x. \ f \ x) = (\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \text{ True_or_False}$$

$$\frac{P ? x}{P \text{ (SOME } x. \ P \ x)} \text{ somel}$$

$$\frac{s = t \quad P \, s}{P \, t} \text{ subst} \qquad \frac{\bigwedge x. \, f \, x = g \, x}{(\lambda x. \, f \, x) = (\lambda x. \, g \, x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \text{ True_or_False}$$

$$\frac{P?x}{P \, (\text{SOME} \, x. \, P \, x)} \text{ somel}$$

$$\overline{\exists f :: ind \implies ind. \text{ inj } f \land \neg \text{surj } f} \text{ infty}$$

That's it.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

That's it.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

That's it.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

$$\frac{x=y}{x\equiv y}$$
 eq_reflection $\frac{(THE \ x. \ x=a)=a}{(THE \ x. \ x=a)=a}$ the_eq_trivial

DEMO: THE DEFINITIONS IN ISABELLE

In the following, we will

In the following, we will

→ look at the definitions in more detail

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

```
lemma [name :] assumes [name1 :] "< prop >_1" assumes [name2 :] "< prop >_2" :: shows "< prop >" < proof >
```

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

```
lemma [name :] | (prop >_1)| assumes [name<sub>1</sub> :] | (prop >_1)| assumes [name<sub>2</sub> :] | (prop >_2)| : | (prop >_1)| | (
```

proves:
$$[< prop >_1; < prop >_2; \dots] \implies < prop >$$

True

consts True :: bool

True $\equiv (\lambda x :: bool. x) = (\lambda x. x)$

Intuition:

right hand side is always true

True

consts True :: bool

True $\equiv (\lambda x :: bool. \ x) = (\lambda x. \ x)$

Intuition:

right hand side is always true

Proof Rules:

 $\overline{\text{True}}$ Truel

Proof:

$$\frac{\overline{(\lambda x :: bool. \ x) = (\lambda x. \ x)}}{\mathsf{True}} \ \ \underset{\mathsf{unfold True_def}}{\mathsf{def}}$$

DEMO

Universal Quantifier

consts ALL ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 ALL $P \equiv P = (\lambda x. \text{ True})$

Intuition:

- \rightarrow ALL P is Higher Order Abstract Syntax for $\forall x. Px.$
- \rightarrow P is a function that takes an x and yields a truth value.
- → ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

Proof Rules:

$$\frac{\bigwedge x. Px}{\forall x. Px}$$
 all $\frac{\forall x. Px}{R}$ all $\frac{\forall x. Px}{R}$ all $\frac{\forall x. Px}{R}$

False

consts False :: bool

False $\equiv \forall P.P$

Intuition:

Everything can be derived from False.

Proof Rules:

 $\frac{\text{False}}{P}$ FalseE $\frac{}{\text{True} \neq \text{False}}$

Negation

consts Not ::
$$bool \Rightarrow bool (\neg _)$$

 $\neg P \equiv P \longrightarrow False$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

Proof Rules:

$$A \Longrightarrow False \over \neg A$$
 not $A \Longrightarrow P$ not $A \Longrightarrow P$

Existential Quantifier

consts EX ::
$$(\alpha \Rightarrow bool) \Rightarrow bool$$
 EX $P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$

Intuition:

- \rightarrow EX P is HOAS for $\exists x. P x.$ (like \forall)
- ightharpoonup Right hand side is characterization of \exists with \forall and \longrightarrow
- → Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$
- → Remember lemma from last time: $(\forall x. P x \longrightarrow Q) = ((\exists x. P x) \longrightarrow Q)$

Proof Rules:

$$\frac{P?x}{\exists x. Px} \text{ exl } \frac{\exists x. Px \quad \bigwedge x. Px \Longrightarrow R}{R} \text{ exE}$$

Conjunction

consts And ::
$$bool \Rightarrow bool (_ \land _)$$

 $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∧
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A \quad B}{A \land B}$$
 conjl $\frac{A \land B \quad \llbracket A; B \rrbracket \Longrightarrow C}{C}$ conjE

Disjunction

consts Or ::
$$bool \Rightarrow bool (_ \lor _)$$

 $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∨ (case distinction)
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A}{A \lor B} \frac{B}{A \lor B}$$
 disjl1/2 $\frac{A \lor B}{C} \stackrel{A \longrightarrow C}{\longrightarrow} \frac{B \Longrightarrow C}{C}$ disjE

If-Then-Else

consts If ::
$$bool \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha$$
 (if_ then _ else _)
If $P \times y \equiv \text{SOME } z$. ($P = \text{True} \longrightarrow z = x$) \land ($P = \text{False} \longrightarrow z = y$)

Intuition:

- \rightarrow for P = True, right hand side collapses to SOME z. z = x
- \rightarrow for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

 $\overline{\text{if True then } s \text{ else } t = s}$ if $\overline{\text{Irue}}$ $\overline{\text{if False then } s \text{ else } t = t}$ if $\overline{\text{False then } s \text{ else } t = t}$

THAT WAS HOL

→ More automation

- → More automation
- → Defining HOL

- → More automation
- → Defining HOL
- → Higher Order Abstract Syntax

- → More automation
- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules