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Last time...

Ü natural deduction rules for ∧, ∨, −→, ¬, iff...
Ü proof by assumption, by intro rule, elim rule
Ü safe and unsafe rules

Ü indent your proofs! (one space per subgoal)
Ü prefer implicit backtracking (chaining) or rule tac, instead of back
Ü prefer and defer
Ü oops and sorry
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Content

Ü Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

Ü Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b ]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c ]

aa1 due; ba2 due; ca3 due
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QUANTIFIERS



Scope

• Scope of parameters: whole subgoal
• Scope of ∀,∃, . . .: ends with ; or =⇒

Example:

∧
x y . [[ ∀y . P y −→ Q z y ; Q x y ]] =⇒ ∃x . Q x y

means∧
x y . [[ (∀y1. P y1 −→ Q z y1); Q x y ]] =⇒ (∃x1. Q x1 y)
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Natural deduction for quantifiers

∧
x . P x

∀x . P x allI ∀x . P x

P ?x =⇒ R

R allE

P ?x

∃x . P x exI
∃x . P x

∧
x . P x =⇒ R

R exE
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Natural deduction for quantifiers

∧
x . P x
∀x . P x allI ∀x . P x P ?x =⇒ R

R allE

P ?x
∃x . P x exI

∃x . P x
∧

x . P x =⇒ R
R exE

• allI and exE introduce new parameters (
∧

x).
• allE and exI introduce new unknowns (?x).
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Instantiating Rules

apply (rule tac x = ”term” in rule)

Like rule, but ?x in rule is instantiated by term before application.

Similar: erule tac

! x is in rule, not in goal !
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Two Successful Proofs

1. ∀x . ∃y . x = y

apply (rule allI)

1.
∧

x . ∃y . x = y

best practice exploration

apply (rule tac x = ”x” in exI) apply (rule exI)

1.
∧

x . x = x 1.
∧

x . x = ?y x

apply (rule refl) apply (rule refl)

?y 7→ λu.u

simpler & clearer shorter & trickier
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Two Unsuccessful Proofs

1. ∃y . ∀x . x = y

apply (rule tac x = ??? in exI) apply (rule exI)

1. ∀x . x = ?y

apply (rule allI)

1.
∧

x . x = ?y

apply (rule refl)

?y 7→ x yields
∧

x ′. x ′ = x
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Two Unsuccessful Proofs

1. ∃y . ∀x . x = y

apply (rule tac x = ??? in exI) apply (rule exI)

1. ∀x . x = ?y

apply (rule allI)

1.
∧

x . x = ?y

apply (rule refl)

?y 7→ x yields
∧

x ′. x ′ = x

Principle:
?f x1 . . . xn can only be replaced by term t

if params(t) ⊆ x1, . . . , xn
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Safe and Unsafe Rules

Safe allI, exE
Unsafe allE, exI

Create parameters first, unknowns later
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DEMO: QUANTIFIER PROOFS



Parameter names

Parameter names are chosen by Isabelle

1. ∀ x . ∃y . x = y

apply (rule allI)

1.
∧

x . ∃y . x = y

apply (rule tac x = ”x” in exI)

Brittle!
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Renaming parameters

1. ∀x . ∃y . x = y

apply (rule allI)

1.
∧

x . ∃y . x = y

apply (rename tac N)

1.
∧

N. ∃y . N = y

apply (rule tac x = ”N” in exI)
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Renaming parameters

1. ∀x . ∃y . x = y

apply (rule allI)

1.
∧

x . ∃y . x = y

apply (rename tac N)

1.
∧

N. ∃y . N = y

apply (rule tac x = ”N” in exI)

In general:
(rename tac x1 . . . xn) renames the rightmost (inner) n parameters
to x1 . . . xn
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Forward Proof: frule and drule

apply (frule < rule >)

Rule: [[A1; . . . ;Am]] =⇒ A

Subgoal: 1. [[B1; . . . ;Bn]] =⇒ C

Substitution: σ(Bi) ≡ σ(A1)

New subgoals: 1. σ([[B1; . . . ;Bn]] =⇒ A2)

...

m-1. σ([[B1; . . . ;Bn]] =⇒ Am)

m. σ([[B1; . . . ;Bn;A]] =⇒ C)

Like frule but also deletes Bi : apply (drule < rule >)
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Examples for Forward Rules

P ∧Q
P

conjunct1 P ∧Q
Q

conjunct2

P −→ Q P
Q

mp

∀x . P x
P ?x

spec
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Forward Proof: OF

r [OF r1 . . . rn]

Prove assumption 1 of theorem r with theorem r1, and
assumption 2 with theorem r2, and . . .

Rule r [[A1; . . . ;Am]] =⇒ A

Rule r1 [[B1; . . . ;Bn]] =⇒ B

Substitution σ(B) ≡ σ(A1)

r [OF r1] σ([[B1; . . . ;Bn;A2; . . . ;Am]] =⇒ A)
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Forward Proof: OF

r [OF r1 . . . rn]

Prove assumption 1 of theorem r with theorem r1, and
assumption 2 with theorem r2, and . . .

Rule r [[A1; . . . ;Am]] =⇒ A

Rule r1 [[B1; . . . ;Bn]] =⇒ B

Substitution σ(B) ≡ σ(A1)

r [OF r1] σ([[B1; . . . ;Bn;A2; . . . ;Am]] =⇒ A)

Example:
dvd add : [[ ?a dvd ?b; ?a dvd ?c ]] =⇒?a dvd ?b + ?c
dvd refl : ?a dvd ?a

dvd add [OF dvd refl] : [[ ?a dvd ?c ]] =⇒?a dvd ?a + ?c
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Forward proofs: THEN

r1 [THEN r2] means r2 [OF r1]
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DEMO: FORWARD PROOFS



Hilbert’s Epsilon Operator

(David Hilbert, 1862-1943)

ε x . Px is a value that satisfies P (if such a value exists)

ε also known as description operator.
In Isabelle the ε-operator is written SOME x . P x

P ?x
P (SOME x . P x) someI
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More Epsilon

ε implies Axiom of Choice:

∀x . ∃y . Q x y =⇒ ∃f . ∀x . Q x (f x)

Existential and universal quantification can be defined with ε.
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More Epsilon

ε implies Axiom of Choice:

∀x . ∃y . Q x y =⇒ ∃f . ∀x . Q x (f x)

Existential and universal quantification can be defined with ε.

Isabelle also knows the definite description operator THE (aka ι):

(THE x . x = a) = a
the eq trivial
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Some Automation

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules
that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover
(works well on predicate logic)

apply fast another automatic search tactic
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EPSILON AND AUTOMATION DEMO



We have learned so far...

Ü Proof rules for predicate calculus

Ü Safe and unsafe rules
Ü Forward Proof
Ü The Epsilon Operator
Ü Some automation

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



We have learned so far...

Ü Proof rules for predicate calculus
Ü Safe and unsafe rules

Ü Forward Proof
Ü The Epsilon Operator
Ü Some automation

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



We have learned so far...

Ü Proof rules for predicate calculus
Ü Safe and unsafe rules
Ü Forward Proof

Ü The Epsilon Operator
Ü Some automation

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



We have learned so far...

Ü Proof rules for predicate calculus
Ü Safe and unsafe rules
Ü Forward Proof
Ü The Epsilon Operator

Ü Some automation

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



We have learned so far...

Ü Proof rules for predicate calculus
Ü Safe and unsafe rules
Ü Forward Proof
Ü The Epsilon Operator
Ü Some automation

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



ISAR (PART 1)

A LANGUAGE FOR STRUCTURED PROOFS



Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?
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Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)
apply (cases A)
apply (rule disjI1)
apply (erule impE)
apply assumption

apply assumption
apply (rule disjI2)
apply assumption

apply (rule impI)
apply (erule disjE)
apply assumption

apply (erule notE)
apply assumption
done

or by blast

OK it’s true. But WHY?
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Motivation

WHY is this true: (A −→ B) = (B ∨ ¬A) ?

Demo
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Isar

apply scripts

What about..

Ü hard to read

Ü Elegance?
Ü hard to maintain Ü Explaining deeper insights?

No explicit structure. Isar!
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A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)
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Isar core syntax

proof = proof [method] statement∗ qed
| by method
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Isar core syntax

proof = proof [method] statement∗ qed
| by method

method = (simp . . . ) | (blast . . . ) | (rule . . . ) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)
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method = (simp . . . ) | (blast . . . ) | (rule . . . ) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula
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proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”

proof (rule conjI)
assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

Ü proof (<method>) applies method to the stated goal
Ü proof applies a single rule that fits
Ü proof - does nothing to the goal
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How do I know what to Assume and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

Ü proof (rule conjI) changes proof state to
1. [[A;B]] =⇒ A
2. [[A;B]] =⇒ B

Ü so we need 2 shows: show ”A” and show ”B”
Ü We are allowed to assume A,

because A is in the assumptions of the proof state.
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The Three Modes of Isar

Ü [prove]:
goal has been stated, proof needs to follow.

Ü [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

Ü [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .
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Have

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”
proof -

have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed
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DEMO



Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof

Ü proof picks an intro rule automatically
Ü conclusion of rule must unify with A ∧ B

Ü now proof picks an elim rule automatically
Ü triggered by from
Ü first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

Ü first n assumptions of rule must unify with A1 . . . An

Ü conclusion of rule must unify with R
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Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property
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Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Fancy Abbreviations

this = the previous fact proved or assumed

then = from this

thus = then show
hence = then have

with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have

with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



DEMO



Moreover and Ultimately

have X1: P1 . . .

have P1 . . .

have X2: P2 . . .

moreover have P2 . . .

...

...

have Xn: Pn . . .

moreover have Pn . . .

from X1 . . .Xn show . . .

ultimately show . . .

wastes lots of brain power
on names X1 . . .Xn
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Moreover and Ultimately

have X1: P1 . . . have P1 . . .
have X2: P2 . . . moreover have P2 . . .
...

...
have Xn: Pn . . . moreover have Pn . . .
from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power
on names X1 . . .Xn
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General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P
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Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply (. . . )
...
apply (. . . )
done
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We have learned so far...

Ü Isar style proofs

Ü proof, qed
Ü assumes, shows
Ü fix, obtain
Ü moreover, ultimately
Ü forward, backward
Ü mixing proof styles
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