
COMP4161
Advanced Topics in Software

Verification

HOL

Thomas Sewell, Miki Tanaka, Rob Sison

T3/2024

Last time...

Ü natural deduction rules for ∧, ∨, −→, ¬, iff...
Ü proof by assumption, by intro rule, elim rule
Ü safe and unsafe rules

Ü indent your proofs! (one space per subgoal)
Ü prefer implicit backtracking (chaining) or rule tac, instead of back
Ü prefer and defer
Ü oops and sorry

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Content

Ü Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

Ü Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c]

aa1 due; ba2 due; ca3 due

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

QUANTIFIERS

Scope

• Scope of parameters: whole subgoal
• Scope of ∀, ∃, . . .: ends with ; or =⇒

Example:∧
x y . [[∀y . P y −→ Q z y ; Q x y]] =⇒ ∃x . Q x y

means∧
x y . [[(∀y1. P y1 −→ Q z y1); Q x y]] =⇒ (∃x1. Q x1 y)

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Natural deduction for quantifiers

∧
x . P x
∀x . P x allI ∀x . P x P ?x =⇒ R

R allE

P ?x
∃x . P x exI

∃x . P x
∧

x . P x =⇒ R
R exE

• allI and exE introduce new parameters (
∧

x).
• allE and exI introduce new unknowns (?x).

6 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Instantiating Rules

apply (rule tac x = ”term” in rule)

Like rule, but ?x in rule is instantiated by term before
application.

Similar: erule tac

! x is in rule, not in goal !

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Two Successful Proofs

1. ∀x . ∃y . x = y

apply (rule allI)

1.
∧

x . ∃y . x = y

best practice exploration

apply (rule tac x = ”x” in exI) apply (rule exI)

1.
∧

x . x = x 1.
∧

x . x = ?y x

apply (rule refl) apply (rule refl)

?y 7→ λu.u

simpler & clearer shorter & trickier

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Two Unsuccessful Proofs

1. ∃y . ∀x . x = y

apply (rule tac x = ??? in exI) apply (rule exI)

1. ∀x . x = ?y

apply (rule allI)

1.
∧

x . x = ?y

apply (rule refl)

?y 7→ x yields
∧

x ′. x ′ = x

Principle:

?f x1 . . . xn can only be replaced by term t

if params(t) ⊆ x1, . . . , xn

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Safe and Unsafe Rules

Safe allI, exE
Unsafe allE, exI

Create parameters first, unknowns later

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO: QUANTIFIER PROOFS

Parameter names

Parameter names are chosen by Isabelle

1. ∀ x . ∃y . x = y

apply (rule allI)

1.
∧

x . ∃y . x = y

apply (rule tac x = ”x” in exI)

Brittle!

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Renaming parameters

1. ∀x . ∃y . x = y

apply (rule allI)

1.
∧

x . ∃y . x = y

apply (rename tac N)

1.
∧

N. ∃y . N = y

apply (rule tac x = ”N” in exI)

In general:
(rename tac x1 . . . xn) renames the rightmost (inner) n
parameters to x1 . . . xn

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Forward Proof: frule and drule

apply (frule < rule >)

Rule: [[A1; . . . ;Am]] =⇒ A

Subgoal: 1. [[B1; . . . ;Bn]] =⇒ C

Substitution: σ(Bi) ≡ σ(A1)

New subgoals: 1. σ([[B1; . . . ;Bn]] =⇒ A2)

...

m-1. σ([[B1; . . . ;Bn]] =⇒ Am)

m. σ([[B1; . . . ;Bn;A]] =⇒ C)

Like frule but also deletes Bi : apply (drule < rule >)

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples for Forward Rules

P ∧Q
P

conjunct1 P ∧Q
Q

conjunct2

P −→ Q P
Q

mp

∀x . P x
P ?x

spec

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Forward Proof: OF

r [OF r1 . . . rn]

Prove assumption 1 of theorem r with theorem r1, and
assumption 2 with theorem r2, and . . .

Rule r [[A1; . . . ;Am]] =⇒ A

Rule r1 [[B1; . . . ;Bn]] =⇒ B

Substitution σ(B) ≡ σ(A1)

r [OF r1] σ([[B1; . . . ;Bn;A2; . . . ;Am]] =⇒ A)

Example:
dvd add : [[?a dvd ?b; ?a dvd ?c]] =⇒?a dvd ?b + ?c
dvd refl : ?a dvd ?a

dvd add [OF dvd refl] : [[?a dvd ?c]] =⇒?a dvd ?a + ?c16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Forward proofs: THEN

r1 [THEN r2] means r2 [OF r1]

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO: FORWARD PROOFS

Hilbert’s Epsilon Operator

(David Hilbert, 1862-1943)

ε x . Px is a value that satisfies P (if such a value exists)

ε also known as description operator.
In Isabelle the ε-operator is written SOME x . P x

P ?x
P (SOME x . P x) someI

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More Epsilon

ε implies Axiom of Choice:

∀x . ∃y . Q x y =⇒ ∃f . ∀x . Q x (f x)

Existential and universal quantification can be defined with ε.

Isabelle also knows the definite description operator THE (aka
ι):

(THE x . x = a) = a
the eq trivial

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Some Automation

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules
that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover
(works well on predicate logic)

apply fast another automatic search tactic

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

EPSILON AND AUTOMATION DEMO

We have learned so far...

Ü Proof rules for predicate calculus
Ü Safe and unsafe rules
Ü Forward Proof
Ü The Epsilon Operator
Ü Some automation

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

ISAR (PART 1)

A LANGUAGE FOR STRUCTURED PROOFS

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

25 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)

apply (cases A)

apply (rule disjI1)

apply (erule impE)

apply assumption

apply assumption

apply (rule disjI2)

apply assumption

apply (rule impI)

apply (erule disjE)

apply assumption

apply (erule notE)

apply assumption

done

or by blast

OK it’s true. But WHY?

26 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Motivation

WHY is this true: (A −→ B) = (B ∨ ¬A) ?

Demo

27 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar

apply scripts What about..

Ü hard to read Ü Elegance?
Ü hard to maintain Ü Explaining deeper insights?

No explicit structure. Isar!

28 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

29 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isar core syntax

proof = proof [method] statement∗ qed
| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula

30 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

Ü proof (<method>) applies method to the stated goal
Ü proof applies a single rule that fits
Ü proof - does nothing to the goal

31 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

How do I know what to Assume and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

Ü proof (rule conjI) changes proof state to
1. [[A;B]] =⇒ A
2. [[A;B]] =⇒ B

Ü so we need 2 shows: show ”A” and show ”B”
Ü We are allowed to assume A,

because A is in the assumptions of the proof state.

32 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Three Modes of Isar

Ü [prove]:
goal has been stated, proof needs to follow.

Ü [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

Ü [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

33 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Have

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”
proof -

have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed

34 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof

Ü proof picks an intro rule automatically
Ü conclusion of rule must unify with A ∧ B

Forward reasoning: . . .
assume AB: ”A ∧ B”
from AB have ”. . .” proof

Ü now proof picks an elim rule automatically
Ü triggered by from
Ü first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

Ü first n assumptions of rule must unify with A1 . . . An

Ü conclusion of rule must unify with R

36 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

37 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

38 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

Moreover and Ultimately

have X1: P1 . . . have P1 . . .
have X2: P2 . . . moreover have P2 . . .
...

...
have Xn: Pn . . . moreover have Pn . . .
from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power
on names X1 . . .Xn

40 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

41 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply (. . .)
...
apply (. . .)
done

42 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

Ü Isar style proofs
Ü proof, qed
Ü assumes, shows
Ü fix, obtain
Ü moreover, ultimately
Ü forward, backward
Ü mixing proof styles

43 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

