COMP4161 Advanced Topics in Software Verification

HOL

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Last time...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- \rightarrow proof by assumption, by intro rule, elim rule
- \rightarrow safe and unsafe rules
- \rightarrow indent your proofs! (one space per subgoal)
- ➜ prefer implicit backtracking (chaining) or *rule tac*, instead of *back*
- ➜ *prefer* and *defer*
- ➜ *oops* and *sorry*

Content

*^a*a1 due; *^b*a2 due; *^c*a3 due

QUANTIFIERS

- Scope of parameters: whole subgoal
- Scope of \forall , \exists , ...: ends with ; or \Longrightarrow

Example:

$$
\begin{array}{c}\n\bigwedge x \ y. \ [\![\forall y. \ P \ y \longrightarrow Q \ z \ y; \ Q \ x \ y \]\n\end{array}
$$
\nmeans\n
$$
\begin{array}{c}\n\bigwedge x \ y. \ [\![\forall y_1. \ P \ y_1 \longrightarrow Q \ z \ y_1);\ Q \ x \ y \]\n\end{array}
$$
\n
$$
\Rightarrow (\exists x_1. \ Q \ x_1 \ y)
$$

Natural deduction for quantifiers

$$
\frac{\bigwedge x. P x}{\forall x. P x} \text{ all } \frac{\forall x. P x \quad P? x \Longrightarrow R}{R} \text{ all}
$$
\n
$$
\frac{P? x}{\exists x. P x} \text{ exl } \frac{\exists x. P x \quad \bigwedge x. P x \Longrightarrow R}{R} \text{ exl}
$$

- alll and $\mathbf{ex} \mathbf{E}$ introduce new parameters $(\wedge x)$.
- **allE** and **exI** introduce new unknowns (?*x*).

Instantiating Rules

apply (rule tac x = "*term*" in *rule*)

Like **rule**, but ?*x* in *rule* is instantiated by *term* before application.

Similar: **erule tac**

! $\boldsymbol{\chi}$ is in *rule*, not in goal $\boldsymbol{\chi}$

Two Successful Proofs

1. ∀*x*. ∃*y*. *x* = *y* **apply** (rule allI) 1. V *x*. ∃*y*. *x* = *y* best practice exploration **apply** (rule tac $x = "x"$ in exI) **apply** (rule exI) 1. $\bigwedge x \cdot x = x$ 1. \bigwedge 1. $\bigwedge x$. $x = ?y x$ **apply** (rule refl) **apply** (rule refl) $?$ *y* $\mapsto \lambda u.u$

simpler & clearer shorter & trickier

Two Unsuccessful Proofs

1. ∃*y*. ∀*x*. *x* = *y*

apply (rule_tac $x = ?$?? in exI) **apply** (rule exI)

1. ∀*x*. *x* = ?*y* **apply** (rule allI) 1. $\bigwedge x$. $x = ?y$ **apply** (rule refl) ? $y \mapsto x$ yields $\bigwedge x'$. $x' = x$

Principle:

?*f x*¹ . . . *xⁿ can only be replaced by term t if params* $(t) \subseteq x_1, \ldots, x_n$

Safe and Unsafe Rules

Safe allI, exE Unsafe allE, exI

Create parameters first, unknowns later

DEMO: QUANTIFIER PROOFS

Parameter names are chosen by Isabelle

1. ∀ *x*. ∃*y*. *x* = *y* **apply** (rule allI)

1.
$$
\bigwedge x. \exists y. x = y
$$

apply (rule_tac $x = "x"$ in exI)

Brittle!

Renaming parameters

1.
$$
\forall x. \exists y. x = y
$$

apply (rule allI)

1.
$$
\bigwedge x. \exists y. x = y
$$

apply (rename tac N)

1.
$$
\bigwedge N
$$
. $\exists y. N = y$

apply (rule_tac $x = "N"$ in exI)

In general: (rename_tac $x_1 \ldots x_n$) renames the rightmost (inner) *n* **parameters to** $x_1 \ldots x_n$

Forward Proof: frule and drule

apply (frule < *rule* >) Rule: $[[A_1; \ldots; A_m]] \Longrightarrow A$ Subgoal: $1. \parallel B_1; \ldots; B_n \parallel \implies C$ Substitution: $\sigma(B_i) \equiv \sigma(A_1)$ New subgoals: $1. \sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_2)$. . . $m-1. \sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_m)$ m. $\sigma(\llbracket B_1;\ldots;B_n;A\rrbracket \Longrightarrow C)$

Like **frule** but also deletes *Bⁱ* : **apply** (drule < *rule* >)

Examples for Forward Rules

$$
\frac{P \wedge Q}{P}
$$
 conjunct1
$$
\frac{P \wedge Q}{Q}
$$
 conjunct2

$$
\frac{P\longrightarrow Q \quad P}{Q} \text{ mp}
$$

$$
\frac{\forall x. P x}{P ? x} \text{ spec}
$$

Forward Proof: OF

$$
r[\mathbf{OF}\ r_1 \ldots r_n]
$$

Prove assumption 1 *of theorem r with theorem r*1*, and assumption* 2 *with theorem r*2*, and* . . .

dvd refl : ?*a dvd* ?*a*

Forward proofs: THEN

r_1 [THEN r_2] means r_2 [OF r_1]

DEMO: FORWARD PROOFS

Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)

ϵ x. Px is a value that satisfies P (if such a value exists)

ε also known as **description operator**. In Isabelle the ε-operator is written SOME *x*. *P x*

$$
\frac{P?x}{P \text{ (SOME } x. P x) \text{ some}}
$$

More Epsilon

 ε implies Axiom of Choice:

$$
\forall x. \exists y. \ Q \ x \ y \Longrightarrow \exists f. \ \forall x. \ Q \ x \ (f \ x)
$$

Existential and universal quantification can be defined with ε .

Isabelle also knows the definite description operator **THE** (aka ι):

(THE
$$
x
$$
, $x = a$) = a the eq-trivial

Some Automation

More Proof Methods:

```
apply (intro <intro-rules>) repeatedly applies intro rules
apply (elim <elim-rules>) repeatedly applies elim rules
apply clarify applies all safe rules
                        that do not split the goal
apply safe applies all safe rules
apply blast an automatic tableaux prover
                        (works well on predicate logic)
apply fast another automatic search tactic
```


 $\overline{\text{res}}$

EPSILON AND AUTOMATION DEMO

We have learned so far...

- \rightarrow Proof rules for predicate calculus
- \rightarrow Safe and unsafe rules
- **→** Forward Proof
- **→** The Epsilon Operator
- \rightarrow Some automation

ISAR (PART 1)

A LANGUAGE FOR STRUCTURED PROOFS

Motivation

Is this true: $(A \rightarrow B) = (B \vee \neg A)$?

Motivation

```
Is this true: (A \rightarrow B) = (B \vee \neg A)?
                    YES!
```

```
apply (rule iffI)
 apply (cases A)
  apply (rule disjI1)
  apply (erule impE)
   apply assumption
  apply assumption
 apply (rule disjI2)
 apply assumption
apply (rule impI)
apply (erule disjE)
 apply assumption
apply (erule notE)
apply assumption
done
```
or by blast

OK it's true. But WHY?

Motivation

WHY is this true: $(A \rightarrow B) = (B \vee \neg A)$?

Demo

apply scripts What about..

- \rightarrow hard to read \rightarrow Elegance?
-
-
- \rightarrow hard to maintain \rightarrow Explaining deeper insights?

No explicit structure. Isar!

A typical Isar proof

```
proof
  assume formula<sup>0</sup>
  have formula<sup>1</sup> by simp
   .
.
.
  have formulan by blast
  show formula_{n+1} by ...
qed
```

```
proves formula\Rightarrow formulan+1
```
(analogous to **assumes**/**shows** in lemma statements)

proof = **proof** [method] statement[∗] **qed** | **by** method

method = $(simp...)$ | (blast ...) | (rule ...) $|...$

```
statement = fix variables
                                \wedgeassume proposition (⇒)
          | [from name+] (have | show) proposition proof
          next (separates subgoals)
```
proposition = [name:] formula

proof [method] statement[∗] **qed**

```
lemma "[[A; B]] \implies A ∧ B"
proof (rule conjI)
  assume A: "A"
  from A show "A" by assumption
next
  assume B: "B"
  from B show "B" by assumption
qed
```
- **proof** (<method>) applies method to the stated goal **→ proof** applies a single rule that fits
- **proof -** does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!

lemma "[[*A*; *B*]] \implies *A* ∧ *B*" **proof** (rule conjI)

- ➜ **proof** (rule conjI) changes proof state to
	- 1. $[A; B] \implies A$
	- 2. $[A; B] \implies B$
- ➜ so we need 2 shows: **show** "*A*" and **show** "*B*"
- ➜ We are allowed to **assume** *A*, because *A* is in the assumptions of the proof state.

The Three Modes of Isar

➜ **[prove]**:

goal has been stated, proof needs to follow.

➜ **[state]**:

proof block has opened or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

➜ **[chain]**:

from statement has been made, goal statement needs to follow.

```
lemma "[[A; B]] \implies A ∧ B" [prove]
proof (rule conjI) [state]
   assume A: "A" [state]
   from A [chain] show "A" [prove] by assumption [state]
next [state] . . .
```


Can be used to make intermediate steps.

Example:

```
lemma '(x:: nat) + 1 = 1 + x"proof -
   have A: "x + 1 = Suc x" by simp
   have B: "1 + x = Suc x" by simp
   show "x + 1 = 1 + x" by (simp only: A B)
qed
```


 $O_{T_{ST}}$

Backward and Forward

Backward reasoning: . . . **have** "*A* ∧ *B*" **proof**

- ➜ **proof** picks an **intro** rule automatically
- ➜ conclusion of rule must unify with *A* ∧ *B*

Forward reasoning: . . .

assume AB: "*A* ∧ *B*" **from** AB **have** ". . ." **proof**

- ➜ now **proof** picks an **elim** rule automatically
- ➜ triggered by **from**
- \rightarrow first assumption of rule must unify with AB

General case: from *A*¹ . . . *Aⁿ* **have** *R* **proof**

- \rightarrow first *n* assumptions of rule must unify with $A_1 \ldots A_n$
- ➜ conclusion of rule must unify with *R*

Fix and Obtain

fix $v_1 \ldots v_n$

Introduces new arbitrary but fixed variables (\sim parameters, \bigwedge)

obtain $v_1 \ldots v_n$ where $\langle \text{prop} \rangle \langle \text{proof} \rangle$

Introduces new variables together with property

Fancy Abbreviations

Moreover and Ultimately

have $X_1: P_1 \ldots$ **have** $P_1 \ldots$ **have** $X_2: P_2 \ldots$ **moreover h** . . . **have** $X_n: P_n:$... **moreover** have $P_n:$... **from** $X_1 \ldots X_n$ **show** ... **ultimately show** ...

wastes lots of brain power on names $X_1 \ldots X_n$

have P_2

General Case Distinctions

show *formula* **proof** -

```
have P_1 \vee P_2 \vee P_3 <proof>
moreover { \text{assume } P_1 \ldots \text{ have } ? thesis \langle \text{proof} \rangle }
moreover { \text{assume } P_2 \ldots \text{ have }?thesis <proof> }
moreover { \text{assume } P_3 \ldots \text{ have }?thesis <proof> }
ultimately show ?thesis by blast
```
qed

{ . . . } is a proof block similar to **proof** ... **qed**

```
\{ assume P_1 \ldots have P \le proof > \}stands for P_1 \implies P
```


me¹

Mixing proof styles

```
from . . .
have . . .
  apply - make incoming facts assumptions
  apply (. . . )
  .
.
.
  apply (. . . )
  done
```


We have learned so far...

- \rightarrow Isar style proofs
- \rightarrow proof, ged
- \rightarrow assumes, shows
- \rightarrow fix, obtain
- \rightarrow moreover, ultimately
- \rightarrow forward, backward
- \rightarrow mixing proof styles

