COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Last time...

- → Simply typed lambda calculus: λ[→]
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- → β -reduction in λ [→] always terminates
- → Types and terms in Isabelle

Content

→ Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
C verification	[9,10]
Practice questions exam prep	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

PREVIEW: PROOFS IN

ISABELLE

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

→ Sequential application of methods until all subgoals are solved.

The Proof State

- 1. $\bigwedge x_1 \dots x_p \cdot \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$ 2. $\bigwedge y_1 \dots y_q \cdot \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$

The Proof State

1.
$$\bigwedge x_1 \dots x_p . \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$$

2. $\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$

 $x_1 \dots x_p$ Parameters $A_1 \dots A_n$ Local assumptions B Actual (sub)goal

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- → MyTh: name of theory. Must live in file MyTh.thy
- → *ImpTh_i*: name of *imported* theories. Import transitive.

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- → MyTh: name of theory. Must live in file MyTh.thy
- → *ImpTh_i*: name of *imported* theories. Import transitive.

Unless you need something special:

```
theory MyTh imports Main begin ... end
```


$$\frac{A \wedge B}{A \wedge B} \text{ conjl} \qquad \frac{A \wedge B}{C} \qquad \text{conjE}$$

$$\frac{A \vee B}{A \vee B} \frac{A \vee B}{A \vee B} \text{ disjl1/2} \qquad \frac{A \vee B}{C} \qquad \text{disjE}$$

$$\frac{A \longrightarrow B}{A \longrightarrow B} \text{ impl} \qquad \frac{A \longrightarrow B}{C} \qquad \text{impE}$$

$$\frac{A \cdot B}{A \cdot B} \text{ conjl} \qquad \frac{A \cdot B}{C} \text{ conjE}$$

$$\frac{A \cdot B}{A \cdot B} \frac{A \cdot B}{A \cdot B} \text{ disjl1/2} \qquad \frac{A \cdot B}{C} \text{ disjE}$$

$$\frac{A \cdot B}{A \cdot B} \text{ impl} \qquad \frac{A \cdot B}{C} \text{ impE}$$

$$\begin{array}{cccc} \frac{A & B}{A \wedge B} \text{ conjl} & \frac{A \wedge B & \llbracket A;B \rrbracket \Longrightarrow C}{C} \text{ conjE} \\ \\ \frac{A}{A \vee B} & \frac{B}{A \vee B} \text{ disjl1/2} & \frac{A \vee B}{C} & \text{disjE} \\ \\ \frac{A}{A \longrightarrow B} \text{ impl} & \frac{A \longrightarrow B}{C} & \text{impE} \end{array}$$

$$\frac{A \cdot B}{A \cdot B} \text{ conjl} \qquad \frac{A \cdot B}{C} \text{ conjE}$$

$$\frac{A}{A \cdot B} \frac{B}{A \cdot B} \text{ disjl1/2} \qquad \frac{A \cdot B}{C} \frac{A \Rightarrow C}{C} \Rightarrow C \text{ disjE}$$

$$\frac{A \rightarrow B}{A \rightarrow B} \text{ impl} \qquad \frac{A \rightarrow B}{C} \text{ impE}$$

$$\frac{A \cdot B}{A \cdot B} \text{ conjl} \qquad \frac{A \cdot B}{C} \text{ conjE}$$

$$\frac{A}{A \cdot B} \frac{B}{A \cdot B} \text{ disjl1/2} \qquad \frac{A \cdot B}{C} \frac{A \Rightarrow C}{C} \Rightarrow C \text{ disjE}$$

$$\frac{A \Rightarrow B}{A \Rightarrow B} \text{ impl} \qquad \frac{A \rightarrow B}{C} \text{ impE}$$

$$\frac{A \cdot B}{A \cdot B} \text{ conjl} \qquad \frac{A \cdot B}{C} \text{ imple} \qquad \frac{A \cdot B}{C} \text{ onjE}$$

$$\frac{A}{A \cdot B} \frac{B}{A \cdot B} \text{ disjl1/2} \qquad \frac{A \cdot B}{C} \frac{A \Rightarrow C}{C} \text{ disjE}$$

$$\frac{A \Rightarrow B}{A \Rightarrow B} \text{ impl} \qquad \frac{A \rightarrow B}{C} \frac{A}{C} \text{ imple}$$

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules decompose formulae to the right of \Longrightarrow .

apply (rule <intro-rule>)

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[A_1; ...; A_n] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \dots A_n$

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- → unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl : (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl: (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- → unify A and C
- \rightarrow replace *C* with *n* new subgoals $A_1 \dots A_n$

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl: (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- → unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

- → unify...
- → replace subgoal...

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl: (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- → unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

- \rightarrow unify... $?P \longrightarrow ?Q$ with $A \longrightarrow A$
- → replace subgoal...

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle: $impl: (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- → unify A and C
- \rightarrow replace *C* with *n* new subgoals $A_1 \dots A_n$

- \rightarrow unify... $?P \longrightarrow ?Q$ with $A \longrightarrow A$
- → replace subgoal... $A \longrightarrow A$ (i.e. $[\![]\!] \Longrightarrow A \longrightarrow A$) with $[\![A]\!] \Longrightarrow A$ (which can be proved with: **apply** assumption)

Elim rules decompose formulae on the left of \Longrightarrow .

apply (erule <elim-rule>)

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- eliminates that assumption

To prove $\llbracket B \land A \rrbracket \Longrightarrow A$ we can use: $\frac{P \land Q \quad \llbracket P;Q \rrbracket \Longrightarrow R}{R}$ conjE

(in Isabelle: conjE : $[P \land Q; P ? Q] \Rightarrow P \Rightarrow P \Rightarrow P$

To prove
$$[\![B \land A]\!] \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} : [\![P;Q]\!] \Longrightarrow R$ conjE (in Isabelle: $conjE : [\![?P \land ?Q; [\![?P;?Q]\!] \Longrightarrow ?R]\!] \Longrightarrow ?R$)

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- unifies first premise of rule with an assumption
- → eliminates that assumption

To prove
$$[\![B \land A]\!] \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} = [\![P;Q]\!] \Longrightarrow R$ conjE

(in Isabelle:
$$conjE$$
 : $[P \land Q]$ $[P \land Q]$ $\Rightarrow P$ $\Rightarrow P$

Recall:

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

- → unify...
- → and also unify...
- → replace subgoal...

To prove
$$[\![B \land A]\!] \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} = [\![P;Q]\!] \Longrightarrow R$ conjE

(in Isabelle:
$$conjE$$
 : $[P \land Q]$: $[P, Q]$ $\Rightarrow P$ $\Rightarrow P$

Recall:

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

- \rightarrow unify... ?R with A
- → and also unify...
- → replace subgoal...

Elim rules: example

To prove
$$[\![B \land A]\!] \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} = \frac{[\![P;Q]\!] \Longrightarrow R}{R}$ conjE

(in Isabelle:
$$conjE$$
 : $[P \land Q]$: $[P, Q]$ $\Rightarrow P$ $\Rightarrow P$

Recall:

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

Here:

- \rightarrow unify... ?R with A
- → and also unify... $?P \land ?Q$ with assumption $B \land A$
- → replace subgoal...

Elim rules: example

To prove
$$[\![B \land A]\!] \Longrightarrow A$$
 we can use: $\frac{P \land Q}{R} = [\![P;Q]\!] \Longrightarrow R$ conjE

(in Isabelle:
$$conjE$$
 : $[P \land Q]$: $[P, Q]$ $\Rightarrow P$ $\Rightarrow P$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- unifies first premise of rule with an assumption
- → eliminates that assumption

Here:

- → unify... ?R with A
- → and also unify... $?P \land ?Q$ with assumption $B \land A$
- → replace subgoal... $\llbracket B \land A \rrbracket \Longrightarrow A$ with $\llbracket B; A \rrbracket \Longrightarrow A$ (which can be proved with: **apply** assumption)

DEMO

More Proof Rules

$$\frac{A = B}{A = B} \text{ iffI} \qquad \frac{A = B}{C} \text{ iffE}$$

$$\frac{A = B}{A = B} \text{ iffD1} \qquad \frac{A = B}{B} \text{ iffD2}$$

$$\frac{A = B}{A = B} \text{ notE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffI} \qquad \frac{A = B}{C} \quad \text{iffE}$$

$$\frac{A = B}{A} \quad \text{iffD1} \qquad \frac{A = B}{B} \quad \text{iffD2}$$

$$\frac{A = B}{A} \quad \text{notI} \qquad \frac{A = B}{B} \quad \text{notE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffI} \qquad \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \quad \text{iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \quad \text{iffD1} \qquad \qquad \frac{A = B}{B \Longrightarrow A} \quad \text{iffD2}$$

$$\frac{A = B}{A \Longrightarrow B} \quad \text{notI} \qquad \qquad \frac{\neg A}{P} \quad \text{notE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffl} \qquad \frac{A = B \quad \llbracket A \longrightarrow B; B \longrightarrow A \rrbracket \Longrightarrow C}{C} \quad \text{iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \quad \text{iffD1} \qquad \qquad \frac{A = B}{B \Longrightarrow A} \quad \text{iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \quad \text{notI} \qquad \qquad \frac{\neg A \quad A}{P} \quad \text{notE}$$

$$\frac{False}{P} \quad \text{FalseE}$$

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans $\frac{s=t}{P} \frac{P}{t}$ subst

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans $\frac{s=t}{P} \frac{P}{t}$ subst

Rarely needed explicitly — used implicitly by term rewriting

$$\overline{P = \textit{True} \lor P = \textit{False}}$$
 True-or-False

$$\overline{P} = \overline{True} \lor P = \overline{False}$$
 True-or-False $\overline{P} \lor \neg P$ excluded-middle $\overline{P} \lor \overline{P}$ contr $\overline{A} \Longrightarrow \overline{A}$ classical

$$\overline{P} = \overline{True} \lor P = \overline{False}$$
 True-or-False $\overline{P} \lor \neg P$ excluded-middle $\overline{P} \lor \overline{P}$ ccontr $\overline{P} \to \overline{P}$ classical

→ excluded-middle, ccontr and classical not derivable from the other rules.

$$\overline{P} = \overline{True} \lor P = \overline{False}$$
 True-or-False $\overline{P} \lor \neg P$ excluded-middle $\overline{P} \lor \overline{P}$ ccontr $\overline{P} \to \overline{P}$ classical

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-or-False, they are derivable

They make the logic "classical", "non-constructive"

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

Safe rules preserve provability

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE $\frac{A}{A \wedge B} \text{ conjl}$

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE $\frac{A}{A \wedge B} \text{ conjl}$

Unsafe rules can turn a provable goal into an unprovable one

Safe rules preserve provability

$$\frac{A \quad B}{A \land B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

$$\frac{A}{A \vee B}$$
 disjl1

Safe rules preserve provability

conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

$$\frac{A \quad B}{A \land B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \vee B}$$
 disjl1

Apply safe rules before unsafe ones

DEMO

What we have learned so far...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules
- → indent your proofs! (one space per subgoal)
- → prefer implicit backtracking (chaining) or *rule_tac*, instead of *back*
- → prefer and defer
- → oops and sorry

