COMP4161
Advanced Topics in Software
Verification

)\%and HOL

Thomas Sewell, Miki Tanaka, Rob Sison
T3/2024

Last time...

=» Simply typed lambda calculus: \™

=» Typing rules for A7, type variables, type contexts
=» (-reduction in A\ satisfies subject reduction

=» (-reduction in A7 always terminates

=» Types and terms in Isabelle

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Content

=» Foundations & Principles

Intro, Lambda calculus, natural deduction
Higher Order Logic, Isar (part 1)
Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
(2,37]
(3.4]

(4.5]
(5.7]
(7]
(8°]
(8.9]
[9,10]
[10°]

Zal due; Pa2 due; °a3 due

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

PREVIEW: PROOFS IN
ISABELLE

Proofs in Isabelle

General schema:

lemma name: "<goal>"
apply <method>
apply <method>

done

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Proofs in Isabelle

General schema:

lemma name: "<goal>"
apply <method>
apply <method>
done
- Sequential application of methods until
all subgoals are solved.

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Proof State

6 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

The Proof State

Xi...X, Parameters
Ai...A, Local assumptions
B Actual (sub)goal

6 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isabelle Theories

Syntax:
theory MyTh
imports ImpTh, ... ImpTh,
begin
(declarations, definitions, theorems, proofs, ...)*
end

=» MyTh: name of theory. Must live in file MyTh.thy
=» ImpTh;: name of imported theories. Import transitive.

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Isabelle Theories

Syntax:
theory MyTh
imports ImpTh, ... ImpTh,
begin
(declarations, definitions, theorems, proofs, ...)*
end

=» MyTh: name of theory. Must live in file MyTh.thy
=» ImpTh;: name of imported theories. Import transitive.

Unless you need something special:
theory MyTh imports Main begin ... end

7 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

Natural Deduction Rules

AANB

ANB conjl C conjE
Av B -
AVE AVE disjl1/2 C disjE
‘ A—B :
yp— impl C impE

For each connective (A, V, etc):
introduction and elimination rules

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Natural Deduction Rules

A B __ . ANB .
ANB conjl C conjE
Av B -
AVE AVE disjl1/2 C disjE
‘ A—B .
A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Natural Deduction Rules

A B , AANB [ABl=C _
ANB conjl C conjE
Av B -
AVEB AVE disjl1/2 C disjE
‘ A—B :
A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Natural Deduction Rules

A B . AANB [AB]l=C)

ANB conjl C conjE
A Av B -
AVEB AVB B disjl1/2 C disjE
‘ A—B :

A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Natural Deduction Rules

A B , AANB [ABl=C _

ANB conjl C conjE
_A AvB A= C B=C ..
AVEB AVB B disjl1/2 C disjE
‘ A—B :

A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Natural Deduction Rules

A B , AANB [ABl=C _

ANB conjl C conjE
_A AvB A= C B=C ..
AV B A d|3]|1/2 C disjE

A=—B A—B :
A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Natural Deduction Rules

A B , AANB [ABl=C _

ANB conjl C conjE
_A AvB A= C B=C ..
AV B A d|3]|1/2 C disjE

A= B A—B A B=C
A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Proof by assumption

apply assumption

proves
1.[Bi;...;Bp] = C
by unifying C with one of the B;

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Proof by assumption

apply assumption

proves
1.[Bi;...;Bp] = C
by unifying C with one of the B;

There may be more than one matching B; and multiple unifiers.
Backtracking!

Explicit backtracking command: back

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

Intro rules

Intro rules decompose formulae to the right of —-.

apply (rule <intro-rule>)

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Intro rules

Intro rules decompose formulae to the right of —-.

apply (rule <intro-rule>)

Introrule [Ay;...;As] = A means
=>» To prove A it suffices to show A ... A,

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Intro rules

Intro rules decompose formulae to the right of —-.

apply (rule <intro-rule>)

Introrule [Ay;...;As] = A means
=>» To prove A it suffices to show A ... A,

Applying rule [As;...;As] = A to subgoal C:

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

Intro rules

Intro rules decompose formulae to the right of —-.

apply (rule <intro-rule>)

Introrule [Ay;...;As] = A means
=>» To prove A it suffices to show A ... A,

Applying rule [As;...;As] = A to subgoal C:
= unify Aand C
=» replace C with n new subgoals A ... A,

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

Intro rules: example

P=Q

A A : [
To prove subgoal A— A we can use) impl

(in Isabelle: impl : (7P =7Q) =P —7Q)

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Intro rules: example

P—= Q
T A A D
0 prove subgoal A— A we can use B o)

impl
(in Isabelle: impl: (7P =7Q) =P —7Q)
Recall:

= unify Aand C
=>» replace C with n new subgoals A ... A,

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Intro rules: example

P—= Q
T A A D
0 prove subgoal A— A we can use B o)

impl
(in Isabelle: impl: (7P =7Q) =P —7Q)
Recall:

= unify Aand C
=>» replace C with n new subgoals A ... A,

Here:

=> unify...
=» replace subgoal...

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Intro rules: example

P—= Q
T A A D
0 prove subgoal A— A we can use B o)

impl
(in Isabelle: impl: (7P =7Q) =P —7Q)
Recall:

= unify Aand C
=>» replace C with n new subgoals A ... A,

Here:

= unify... 7P —?7QwithA— A
=» replace subgoal...

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Intro rules: example

P=Q

A A : [
To prove subgoal A— A we can use) impl

(in Isabelle: impl : (7P =7Q) =P —7Q)
Recall:

= unify Aand C
=>» replace C with n new subgoals A ... A,

Here:

= unify... 7P —?7QwithA— A
=» replace subgoal... A — Afi.e. [] = A — A)
with [A] = A (which can be proved with: apply assumption)

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

Elim rules

Elim rules decompose formulae on the left of —=>-.

apply (erule <elim-rule>)

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Elim rules

Elim rules decompose formulae on the left of —=>-.

apply (erule <elim-rule>)

Elimrule [A¢;...;A;] = A means

=> If | know A and want to prove A it suffices to show A ..

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

.An

Elim rules

Elim rules decompose formulae on the left of —=>-.

apply (erule <elim-rule>)

Elimrule [A¢;...;A;] = A means

=> If | know A and want to prove A it suffices to show A ..

Applying rule [As;...;As] = A to subgoal C:
Like rule but also

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

.An

Elim rules

Elim rules decompose formulae on the left of —=>-.

apply (erule <elim-rule>)

Elimrule [A¢;...;A;] = A means

=> If | know A and want to prove A it suffices to show A ..

Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

.An

Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Elim rules: example

PAQ [P,Ql= R
R

To prove [BA Al = A we can use:

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

conjE

Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

Here:

=> unify...
=>» and also unify...
=» replace subgoal...

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

Here:

=>» unify... ?Rwith A
=>» and also unify...
=» replace subgoal...

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

Here:

=>» unify... ?Rwith A
=» and also unify... ?PA?Q with assumption BA A
=» replace subgoal...

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

Here:

=>» unify... ?Rwith A
=» and also unify... ?PA?Q with assumption BA A

=» replace subgoal... [BAA] = A
with [B; A] = A (which can be proved with: apply assumption)

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

DEMO

MORE PROOF RULES

Iff, Negation, True and False

A=B
iffl iffE

A=B A=B

iffD2

-

notE

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Iff, Negation, True and False

A— B B— A . A=B .
A—B iffl C iffE

A=B iupy A=5

iffD2

-

notl notE

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Iff, Negation, True and False

A—B B— A. A=B [A—BB— A= C

y iffl

A=B

iffD1

notl

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

C iffE

A=B

iffD2

-

notE

Iff, Negation, True and False

A—B B— A. A=B [A—BB— A= C

A—B iffl C iffE
A=B . A=B .
A— B iffD1 B— A iffD2

! notl P notE

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Iff, Negation, True and False

A—B B— A. A=B [A—BB— A= C

A—B iffl C iffE
A=B . A=B .
A== D1 S5 D2
A= False notl —A notE

-A

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Iff, Negation, True and False

A—B B— A. A=B [A—BB— A= C

A—B iffl C iffE
A=B . A=B .
A== D1 S5 D2
A= False notl A A o

-A

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Iff, Negation, True and False

A=—B B=— A,

A=B [A—BB— A= C .
A—B iffl C iffE
AA;BB iffD1 BA;BA iffD2
A::i/l‘-'alse notl ﬁAP A hotE
True Truel @ FalseE

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Equality

S= r=s s=t

t
_ °S=! gym I=o o=°¢
=1 refl i—s y ’ trans

Equality

s=t r= =t
— 2= " sym
—7 refl i—s y ; trans
s=t Ps
P subst

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Equality

s=t r= =t
— 2= " sym
- refl i—s y ; trans
s=t Ps
Pt subst

Rarely needed explicitly — used implicitly by term rewriting

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Classical

True-or-False

P = TrueVv P = False

Classical

P— True v P — False /Tue-or-False

Pyp excluded-middle

TA=Fase oo A=A gassical

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Classical

P— True v P — False /Tue-or-False

Pyp excluded-middle

A= RIS oonty A=A Gassical

-» excluded-middle, ccontr and classical
not derivable from the other rules.

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Classical

P— True v P — False /Tue-or-False

Pyp excluded-middle

TA=Fase oo A=A gassical

-» excluded-middle, ccontr and classical
not derivable from the other rules.

=» if we include True-or-False, they are derivable

They make the logic “classical”’, “non-constructive”

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Cases

Pyvop excluded-middle

is a case distinction on type bool

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Cases

Pyvop excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Safe and not so safe

Safe rules preserve provability

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

A B
ANB

Unsafe rules can turn a provable goal into an unprovable one

conjl

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

A B
AANB
Unsafe rules can turn a provable goal into an unprovable one
disjl1, disjl2, impE, iffD1, iffD2, notE
A

m d|SJ|1

conjl

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

A B
AANB
Unsafe rules can turn a provable goal into an unprovable one
disjl1, disjl2, impE, iffD1, iffD2, notE
A

m d|SJ|1

conjl

Apply safe rules before unsafe ones

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

DEMO

What we have learned so far...

natural deduction rules for A, vV, —, —, iff...
proof by assumption, by intro rule, elim rule
safe and unsafe rules

indent your proofs! (one space per subgoal)

prefer implicit backtracking (chaining) or rule_tac, instead of back
prefer and defer

oops and sorry

d4idd LI

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

