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Last time...

=» Simply typed lambda calculus: \™

=» Typing rules for A7, type variables, type contexts
=» (-reduction in A\ satisfies subject reduction

=» (-reduction in A7 always terminates

=» Types and terms in Isabelle
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Content

=» Foundations & Principles

Intro, Lambda calculus, natural deduction
Higher Order Logic, Isar (part 1)
Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
(2,37]
(3.4]

(4.5]
(5.7]
(7]
(8°]
(8.9]
[9,10]
[10°]

Zal due; Pa2 due; °a3 due
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PREVIEW: PROOFS IN
ISABELLE



Proofs in Isabelle

General schema:

lemma name: "<goal>"
apply <method>
apply <method>

done
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Proofs in Isabelle

General schema:

lemma name: "<goal>"
apply <method>
apply <method>
done
- Sequential application of methods until
all subgoals are solved.
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The Proof State
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The Proof State

Xi...X, Parameters
Ai...A, Local assumptions
B Actual (sub)goal
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Isabelle Theories

Syntax:
theory MyTh
imports ImpTh, ... ImpTh,
begin
(declarations, definitions, theorems, proofs, ...)*
end

=» MyTh: name of theory. Must live in file MyTh.thy
=» ImpTh;: name of imported theories. Import transitive.
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Isabelle Theories

Syntax:
theory MyTh
imports ImpTh, ... ImpTh,
begin
(declarations, definitions, theorems, proofs, ...)*
end

=» MyTh: name of theory. Must live in file MyTh.thy
=» ImpTh;: name of imported theories. Import transitive.

Unless you need something special:
theory MyTh imports Main begin ... end
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Natural Deduction Rules

AANB

ANB conjl C conjE
Av B -
AVE AVE disjl1/2 C disjE
‘ A—B :
yp— impl C impE

For each connective (A, V, etc):
introduction and elimination rules
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Natural Deduction Rules

A B __ . ANB .
ANB conjl C conjE
Av B -
AVE AVE disjl1/2 C disjE
‘ A—B .
A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules
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Natural Deduction Rules

A B , AANB [ABl=C _
ANB conjl C conjE
Av B -
AVEB AVE disjl1/2 C disjE
‘ A—B :
A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules
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Natural Deduction Rules

A B . AANB [AB]l=C )

ANB conjl C conjE
A Av B -
AVEB AVB B disjl1/2 C disjE
‘ A—B :

A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules
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Natural Deduction Rules

A B , AANB [ABl=C _

ANB conjl C conjE
_A AvB A= C B=C ..
AVEB AVB B disjl1/2 C disjE
‘ A—B :

A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules
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Natural Deduction Rules

A B , AANB [ABl=C _

ANB conjl C conjE
_A AvB A= C B=C ..
AV B A d|3]|1/2 C disjE

A=—B A—B :
A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules
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Natural Deduction Rules

A B , AANB [ABl=C _

ANB conjl C conjE
_A AvB A= C B=C ..
AV B A d|3]|1/2 C disjE

A= B A—B A B=C
A B impl C impE

For each connective (A, V, etc):
introduction and elimination rules
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Proof by assumption

apply assumption

proves
1.[Bi;...;Bp] = C
by unifying C with one of the B;
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Proof by assumption

apply assumption

proves
1.[Bi;...;Bp] = C
by unifying C with one of the B;

There may be more than one matching B; and multiple unifiers.
Backtracking!

Explicit backtracking command: back
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Intro rules

Intro rules decompose formulae to the right of —-.

apply (rule <intro-rule>)
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Intro rules

Intro rules decompose formulae to the right of —-.

apply (rule <intro-rule>)

Introrule [Ay;...;As] = A means
=>» To prove A it suffices to show A ... A,
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Intro rules

Intro rules decompose formulae to the right of —-.

apply (rule <intro-rule>)

Introrule [Ay;...;As] = A means
=>» To prove A it suffices to show A ... A,

Applying rule [As;...;As] = A to subgoal C:
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Intro rules

Intro rules decompose formulae to the right of —-.

apply (rule <intro-rule>)

Introrule [Ay;...;As] = A means
=>» To prove A it suffices to show A ... A,

Applying rule [As;...;As] = A to subgoal C:
= unify Aand C
=» replace C with n new subgoals A ... A,
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Intro rules: example

P=Q

A A : [
To prove subgoal A— A we can use ) impl

(in Isabelle: impl : (7P =7Q) =P —7Q)
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Intro rules: example

P—= Q
T A A D
0 prove subgoal A— A we can use B o)

impl
(in Isabelle: impl: (7P =7Q) =P —7Q)
Recall:

= unify Aand C
=>» replace C with n new subgoals A ... A,
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Intro rules: example

P—= Q
T A A D
0 prove subgoal A— A we can use B o)

impl
(in Isabelle: impl: (7P =7Q) =P —7Q)
Recall:

= unify Aand C
=>» replace C with n new subgoals A ... A,

Here:

=> unify...
=» replace subgoal...
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Intro rules: example

P—= Q
T A A D
0 prove subgoal A— A we can use B o)

impl
(in Isabelle: impl: (7P =7Q) =P —7Q)
Recall:

= unify Aand C
=>» replace C with n new subgoals A ... A,

Here:

= unify... 7P —?7QwithA— A
=» replace subgoal...
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Intro rules: example

P=Q

A A : [
To prove subgoal A— A we can use ) impl

(in Isabelle: impl : (7P =7Q) =P —7Q)
Recall:

= unify Aand C
=>» replace C with n new subgoals A ... A,

Here:

= unify... 7P —?7QwithA— A
=» replace subgoal... A — Afi.e. [] = A — A)
with [ A] = A (which can be proved with: apply assumption)
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Elim rules

Elim rules decompose formulae on the left of —=>-.

apply (erule <elim-rule>)
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Elim rules

Elim rules decompose formulae on the left of —=>-.

apply (erule <elim-rule>)

Elimrule [A¢;...;A;] = A means

=> If | know A and want to prove A it suffices to show A ..
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Elim rules

Elim rules decompose formulae on the left of —=>-.

apply (erule <elim-rule>)

Elimrule [A¢;...;A;] = A means

=> If | know A and want to prove A it suffices to show A ..

Applying rule [As;...;As] = A to subgoal C:
Like rule but also
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Elim rules

Elim rules decompose formulae on the left of —=>-.

apply (erule <elim-rule>)

Elimrule [A¢;...;A;] = A means

=> If | know A and want to prove A it suffices to show A ..

Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption
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Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)
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Elim rules: example

PAQ [P,Ql= R
R

To prove [BA Al = A we can use:

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption
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Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

Here:

=> unify...
=>» and also unify...
=» replace subgoal...

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License



Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

Here:

=>» unify... ?Rwith A
=>» and also unify...
=» replace subgoal...
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Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

Here:

=>» unify... ?Rwith A
=» and also unify... ?PA?Q with assumption BA A
=» replace subgoal...
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Elim rules: example

PAQ [P,Ql= R
R

To prove [BAA] = A we can use: conjE

(in Isabelle: conjE : [?P A?Q; [?P; 7Q] = ?R] = ?R)

Recall:
Applying rule [As;...;As] = A to subgoal C:
Like rule but also
=» unifies first premise of rule with an assumption
=» eliminates that assumption

Here:

=>» unify... ?Rwith A
=» and also unify... ?PA?Q with assumption BA A

=» replace subgoal... [BAA] = A
with [B; A] = A (which can be proved with: apply assumption)
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DEMO



MORE PROOF RULES



Iff, Negation, True and False

A=B
iffl iffE

A=B A=B

iffD2

-

notE
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Iff, Negation, True and False

A— B B— A . A=B .
A—B iffl C iffE

A=B iupy A=5

iffD2

-

notl notE
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Iff, Negation, True and False

A—B B— A. A=B [A—BB— A= C

y iffl

A=B

iffD1

notl
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C iffE

A=B

iffD2

-

notE




Iff, Negation, True and False

A—B B— A. A=B [A—BB— A= C

A—B iffl C iffE
A=B . A=B .
A— B iffD1 B— A iffD2

! notl P notE
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Iff, Negation, True and False

A—B B— A. A=B [A—BB— A= C

A—B iffl C iffE
A=B . A=B .
A== D1 S5 D2
A= False notl —A notE

-A
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Iff, Negation, True and False

A—B B— A. A=B [A—BB— A= C

A—B iffl C iffE
A=B . A=B .
A== D1 S5 D2
A= False notl A A o

-A
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Iff, Negation, True and False

A=—B B=— A,

A=B [A—BB— A= C .
A—B iffl C iffE
AA;BB iffD1 BA;BA iffD2
A::i/l‘-'alse notl ﬁAP A hotE
True Truel @ FalseE
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Equality

S= r=s s=t

t
_ °S=! gym I=o o=°¢
=1 refl i—s y ’ trans




Equality

s=t r= =t
— 2= " sym
—7 refl i—s y ; trans
s=t Ps
P subst
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Equality

s=t r= =t
— 2= " sym
- refl i—s y ; trans
s=t Ps
Pt subst

Rarely needed explicitly — used implicitly by term rewriting
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Classical

True-or-False

P = TrueVv P = False




Classical

P— True v P — False /Tue-or-False

Pyp excluded-middle

TA=Fase oo A=A gassical
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Classical

P— True v P — False /Tue-or-False

Pyp excluded-middle

A= RIS oonty A=A Gassical

-» excluded-middle, ccontr and classical
not derivable from the other rules.
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Classical

P— True v P — False /Tue-or-False

Pyp excluded-middle

TA=Fase oo A=A gassical

-» excluded-middle, ccontr and classical
not derivable from the other rules.

=» if we include True-or-False, they are derivable

They make the logic “classical”’, “non-constructive”
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Cases

Pyvop excluded-middle

is a case distinction on type bool
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Cases

Pyvop excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License




Safe and not so safe

Safe rules preserve provability

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License




Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

A B
ANB

conjl
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Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

A B
ANB

Unsafe rules can turn a provable goal into an unprovable one

conjl
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Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

A B
AANB
Unsafe rules can turn a provable goal into an unprovable one
disjl1, disjl2, impE, iffD1, iffD2, notE
A

m d|SJ|1

conjl
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Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

A B
AANB
Unsafe rules can turn a provable goal into an unprovable one
disjl1, disjl2, impE, iffD1, iffD2, notE
A

m d|SJ|1

conjl

Apply safe rules before unsafe ones
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DEMO



What we have learned so far...

natural deduction rules for A, vV, —, —, iff...
proof by assumption, by intro rule, elim rule
safe and unsafe rules

indent your proofs! (one space per subgoal)

prefer implicit backtracking (chaining) or rule_tac, instead of back
prefer and defer

oops and sorry

d4idd LI
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