COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Last time...

- → Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

Content

→ Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	$[8^{b}]$
 Hoare logic, proofs about programs, invariants 	[8,9]
C verification	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

PREVIEW: PROOFS IN

ISABELLE

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

→ Sequential application of methods until all subgoals are solved.

The Proof State

```
1. \bigwedge x_1 \dots x_p \cdot \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B
2. \bigwedge y_1 \dots y_q \cdot \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D
```

 $x_1 \dots x_p$ Parameters $A_1 \dots A_n$ Local assumptions B Actual (sub)goal

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- → MyTh: name of theory. Must live in file MyTh. thy
- → *ImpTh_i*: name of *imported* theories. Import transitive.

Unless you need something special:

```
theory MyTh imports Main begin ... end
```


Natural Deduction Rules

$$\frac{A \cdot B}{A \wedge B} \text{ conjl} \qquad \frac{A \wedge B}{C} \text{ impl} \qquad \frac{A \wedge B}{C} \text{ onjE}$$

$$\frac{A}{A \vee B} \frac{B}{A \vee B} \text{ disjl1/2} \qquad \frac{A \vee B}{C} \frac{A \Longrightarrow C}{C} \text{ disjE}$$

$$\frac{A \Longrightarrow B}{A \Longrightarrow B} \text{ impl} \qquad \frac{A \longrightarrow B}{C} \frac{A}{C} \implies C \text{ impE}$$

For each connective (\land , \lor , etc): introduction and elimination rules

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 ... A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- → unify A and C
- \rightarrow replace *C* with *n* new subgoals $A_1 \dots A_n$

Intro rules: example

To prove subgoal $A \longrightarrow A$ we can use: $\frac{P \Longrightarrow Q}{P \longrightarrow Q}$ impl

(in Isabelle:
$$impl: (?P \Longrightarrow ?Q) \Longrightarrow ?P \longrightarrow ?Q)$$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- → unify A and C
- \rightarrow replace *C* with *n* new subgoals $A_1 \dots A_n$

Here:

- → unify... $?P \longrightarrow ?Q$ with $A \longrightarrow A$
- → replace subgoal... $A \longrightarrow A$ (i.e. $[\![]\!] \Longrightarrow A \longrightarrow A$) with $[\![]\!] A \supset A$ (which can be proved with: **apply** assumption)

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[A_1; ...; A_n] \Longrightarrow A$ means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- eliminates that assumption

Elim rules: example

To prove
$$\llbracket B \wedge A \rrbracket \Longrightarrow A$$
 we can use: $P \wedge Q \quad \llbracket P; Q \rrbracket \Longrightarrow R$ conjE

(in Isabelle:
$$conjE$$
 : $[P \land Q]$ $[P \land Q]$ $P \land P$ $P \land P$

Recall:

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

Here:

- \rightarrow unify... ?R with A
- → and also unify... $?P \land ?Q$ with assumption $B \land A$
- → replace subgoal... [B ∧ A] ⇒ A with [B: A] ⇒ A (which can be proved with: apply assumption)

DEMO

More Proof Rules

Iff, Negation, True and False

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans

$$\frac{s=t P s}{P t}$$
 subst

Rarely needed explicitly — used implicitly by term rewriting

Classical

$$\overline{P} = \overline{True} \lor P = \overline{False}$$
 True-or-False $\overline{P} \lor \neg P$ excluded-middle $\overline{P} \lor \overline{P}$ contr $\overline{P} \Leftrightarrow \overline{P} \Leftrightarrow \overline{P$

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-or-False, they are derivable

They make the logic "classical", "non-constructive"

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

Safe and not so safe

Safe rules preserve provability

conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

$$\frac{A \quad B}{A \land B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \vee B}$$
 disjl1

Apply safe rules before unsafe ones

DEMO

What we have learned so far...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules
- → indent your proofs! (one space per subgoal)
- → prefer implicit backtracking (chaining) or rule_tac, instead of back
- → prefer and defer
- → oops and sorry

