
COMP4161
Advanced Topics in Software

Verification

λ→

Thomas Sewell, Miki Tanaka, Rob Sison

T3/2024

Last time...

Ü λ calculus syntax
Ü free variables, substitution
Ü β reduction
Ü α and η conversion
Ü β reduction is confluent
Ü λ calculus is expressive (Turing complete)
Ü λ calculus is inconsistent (as a logic)

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Content

Ü Foundations & Principles
• Intro, Lambda calculus, natural deduction [1,2]
• Higher Order Logic, Isar (part 1) [2,3a]
• Term rewriting [3,4]

Ü Proof & Specification Techniques
• Inductively defined sets, rule induction [4,5]
• Datatype induction, primitive recursion [5,7]
• General recursive functions, termination proofs [7]
• Proof automation, Isar (part 2) [8b]
• Hoare logic, proofs about programs, invariants [8,9]
• C verification [9,10]
• Practice, questions, exam prep [10c]

aa1 due; ba2 due; ca3 due

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

λ calculus is inconsistent

Can find term R such that R R =β not(R R)

There are more terms that do not make sense:
1 2, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

λ calculus is inconsistent

Can find term R such that R R =β not(R R)

There are more terms that do not make sense:
1 2, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:

Ü for term t has type α write t :: α

Ü if x has type α then λx . x is a function from α to α
Write: (λx . x) :: α⇒ α

Ü for s t to be sensible:
s must be a function
t must be right type for parameter

If s :: α⇒ β and t :: α then (s t) :: β

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:
Ü for term t has type α write t :: α

Ü if x has type α then λx . x is a function from α to α
Write: (λx . x) :: α⇒ α

Ü for s t to be sensible:
s must be a function
t must be right type for parameter

If s :: α⇒ β and t :: α then (s t) :: β

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:
Ü for term t has type α write t :: α

Ü if x has type α then λx . x is a function from α to α
Write: (λx . x) :: α⇒ α

Ü for s t to be sensible:
s must be a function
t must be right type for parameter

If s :: α⇒ β and t :: α then (s t) :: β

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:
Ü for term t has type α write t :: α

Ü if x has type α then λx . x is a function from α to α
Write: (λx . x) :: α⇒ α

Ü for s t to be sensible:
s must be a function
t must be right type for parameter

If s :: α⇒ β and t :: α then (s t) :: β

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

THAT’S ABOUT IT

NOW FORMALLY AGAIN

Syntax for λ→

Terms: t ::= v | c | (t t) | (λx . t)
v , x ∈ V , c ∈ C, V ,C sets of names

Types: τ ::= b | ν | τ ⇒ τ
b ∈ {bool, int, . . .} base types
ν ∈ {α, β, . . .} type variables

α⇒ β ⇒ γ = α⇒ (β ⇒ γ)

Context Γ:
Γ: function from variable and constant names to types.

Term t has type τ in context Γ: Γ ` t :: τ

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Syntax for λ→

Terms: t ::= v | c | (t t) | (λx . t)
v , x ∈ V , c ∈ C, V ,C sets of names

Types: τ ::= b | ν | τ ⇒ τ
b ∈ {bool, int, . . .} base types
ν ∈ {α, β, . . .} type variables

α⇒ β ⇒ γ = α⇒ (β ⇒ γ)

Context Γ:
Γ: function from variable and constant names to types.

Term t has type τ in context Γ: Γ ` t :: τ

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Syntax for λ→

Terms: t ::= v | c | (t t) | (λx . t)
v , x ∈ V , c ∈ C, V ,C sets of names

Types: τ ::= b | ν | τ ⇒ τ
b ∈ {bool, int, . . .} base types
ν ∈ {α, β, . . .} type variables

α⇒ β ⇒ γ = α⇒ (β ⇒ γ)

Context Γ:
Γ: function from variable and constant names to types.

Term t has type τ in context Γ: Γ ` t :: τ

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

Γ ` (λx . x) ::

α⇒ α

[y ← int] ` y :: int

[z ← bool] ` (λy . y) z :: bool

[] ` λf x . f x :: (α⇒ β)⇒ α⇒ β

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

Γ ` (λx . x) :: α⇒ α

[y ← int] ` y ::

int

[z ← bool] ` (λy . y) z :: bool

[] ` λf x . f x :: (α⇒ β)⇒ α⇒ β

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

Γ ` (λx . x) :: α⇒ α

[y ← int] ` y :: int

[z ← bool] ` (λy . y) z ::

bool

[] ` λf x . f x :: (α⇒ β)⇒ α⇒ β

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

Γ ` (λx . x) :: α⇒ α

[y ← int] ` y :: int

[z ← bool] ` (λy . y) z :: bool

[] ` λf x . f x ::

(α⇒ β)⇒ α⇒ β

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

Γ ` (λx . x) :: α⇒ α

[y ← int] ` y :: int

[z ← bool] ` (λy . y) z :: bool

[] ` λf x . f x :: (α⇒ β)⇒ α⇒ β

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

Γ ` (λx . x) :: α⇒ α

[y ← int] ` y :: int

[z ← bool] ` (λy . y) z :: bool

[] ` λf x . f x :: (α⇒ β)⇒ α⇒ β

A term t is well typed or type correct
if there are Γ and τ such that Γ ` t :: τ

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: Γ ` x :: Γ(x)

Application:

Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ

Abstraction:

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: Γ ` x :: Γ(x)

Application:

Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ

Abstraction:

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: Γ ` x :: Γ(x)

Application:
Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ

Abstraction:

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: Γ ` x :: Γ(x)

Application:
Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ

Abstraction:

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: Γ ` x :: Γ(x)

Application:
Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ

Abstraction:
Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example Type Derivation:

[x ← α, y ← β] ` x :: α

Var

[x ← α] ` λy . x ::

β ⇒ α

Abs

[] ` λx y . x ::

α⇒ β ⇒ α

Abs

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example Type Derivation:

[x ← α, y ← β] ` x :: α

Var

[x ← α] ` λy . x ::

β ⇒ α

Abs

[] ` λx y . x :: α⇒

β ⇒ α

Abs

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example Type Derivation:

[x ← α, y ← β] ` x :: α
Var

[x ← α] ` λy . x :: β ⇒ α
Abs

[] ` λx y . x :: α⇒ β ⇒ α
Abs

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example Type Derivation:

[x ← α, y ← β] ` x :: α
Var

[x ← α] ` λy . x :: β ⇒ α
Abs

[] ` λx y . x :: α⇒ β ⇒ α
Abs

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Γ ` f :: α⇒ (α⇒ β)
Var

Γ ` x :: α
Var

Γ ` f x :: α⇒ β
App

Γ ` x :: α
Var

Γ ` f x x :: β
App

[f ← α⇒ α⇒ β] ` λx . f x x :: α⇒ β
Abs

[] ` λf x . f x x ::

(α⇒ α⇒ β)⇒ α⇒ β

Abs

Γ = [f ← α⇒ α⇒ β, x ← α]

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Γ ` f :: α⇒ (α⇒ β)
Var

Γ ` x :: α
Var

Γ ` f x :: α⇒ β
App

Γ ` x :: α
Var

Γ ` f x x :: β
App

[f ← α⇒ α⇒ β] ` λx . f x x :: α⇒ β
Abs

[] ` λf x . f x x :: (α⇒ α⇒ β)⇒ α⇒ β
Abs

Γ = [f ← α⇒ α⇒ β, x ← α]

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Γ ` f :: α⇒ (α⇒ β)
Var

Γ ` x :: α
Var

Γ ` f x :: α⇒ β
App

Γ ` x :: α
Var

Γ ` f x x :: β
App

[f ← α⇒ α⇒ β] ` λx . f x x :: α⇒ β
Abs

[] ` λf x . f x x :: (α⇒ α⇒ β)⇒ α⇒ β
Abs

Γ = [f ← α⇒ α⇒ β, x ← α]

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Γ ` f :: α⇒ (α⇒ β)
Var

Γ ` x :: α
Var

Γ ` f x :: α⇒ β
App

Γ ` x :: α
Var

Γ ` f x x :: β
App

[f ← α⇒ α⇒ β] ` λx . f x x :: α⇒ β
Abs

[] ` λf x . f x x :: (α⇒ α⇒ β)⇒ α⇒ β
Abs

Γ = [f ← α⇒ α⇒ β, x ← α]

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Γ ` f :: α⇒ (α⇒ β)
Var

Γ ` x :: α
Var

Γ ` f x :: α⇒ β
App

Γ ` x :: α
Var

Γ ` f x x :: β
App

[f ← α⇒ α⇒ β] ` λx . f x x :: α⇒ β
Abs

[] ` λf x . f x x :: (α⇒ α⇒ β)⇒ α⇒ β
Abs

Γ = [f ← α⇒ α⇒ β, x ← α]

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Γ ` f :: α⇒ (α⇒ β)
Var

Γ ` x :: α
Var

Γ ` f x :: α⇒ β
App

Γ ` x :: α
Var

Γ ` f x x :: β
App

[f ← α⇒ α⇒ β] ` λx . f x x :: α⇒ β
Abs

[] ` λf x . f x x :: (α⇒ α⇒ β)⇒ α⇒ β
Abs

Γ = [f ← α⇒ α⇒ β, x ← α]

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Γ ` f :: α⇒ (α⇒ β)
Var

Γ ` x :: α
Var

Γ ` f x :: α⇒ β
App

Γ ` x :: α
Var

Γ ` f x x :: β
App

[f ← α⇒ α⇒ β] ` λx . f x x :: α⇒ β
Abs

[] ` λf x . f x x :: (α⇒ α⇒ β)⇒ α⇒ β
Abs

Γ = [f ← α⇒ α⇒ β, x ← α]

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Γ ` f :: α⇒ (α⇒ β)
Var

Γ ` x :: α
Var

Γ ` f x :: α⇒ β
App

Γ ` x :: α
Var

Γ ` f x x :: β
App

[f ← α⇒ α⇒ β] ` λx . f x x :: α⇒ β
Abs

[] ` λf x . f x x :: (α⇒ α⇒ β)⇒ α⇒ β
Abs

Γ = [f ← α⇒ α⇒ β, x ← α]

Remember:

Γ ` x :: Γ(x)
Var Γ ` t1 :: τ2 ⇒ τ Γ ` t2 :: τ2

Γ ` (t1 t2) :: τ
App

Γ[x ← τx] ` t :: τ

Γ ` (λx . t) :: τx ⇒ τ
Abs

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Examples:

int⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: [] ` λx . x :: bool⇒ bool

[] ` λx . x :: α⇒ α

Examples:

int⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: [] ` λx . x :: bool⇒ bool

[] ` λx . x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: [] ` λx . x :: bool⇒ bool

[] ` λx . x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int⇒ bool . α⇒ β

. β ⇒ α 6. α⇒ α

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: [] ` λx . x :: bool⇒ bool

[] ` λx . x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int⇒ bool . α⇒ β . β ⇒ α

6. α⇒ α

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: [] ` λx . x :: bool⇒ bool

[] ` λx . x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

It can be found by executing the typing rules backwards.

Ü type checking: checking if Γ ` t :: τ for given Γ and τ
Ü type inference: computing Γ and τ such that Γ ` t :: τ

Type checking and type inference on λ→ are decidable.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
Γ ` t :: τ =⇒ ∃σ. Γ ` t :: σ ∧ (∀σ′. Γ ` t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

Ü type checking: checking if Γ ` t :: τ for given Γ and τ
Ü type inference: computing Γ and τ such that Γ ` t :: τ

Type checking and type inference on λ→ are decidable.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
Γ ` t :: τ =⇒ ∃σ. Γ ` t :: σ ∧ (∀σ′. Γ ` t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

Ü type checking: checking if Γ ` t :: τ for given Γ and τ
Ü type inference: computing Γ and τ such that Γ ` t :: τ

Type checking and type inference on λ→ are decidable.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
Γ ` t :: τ =⇒ ∃σ. Γ ` t :: σ ∧ (∀σ′. Γ ` t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

Ü type checking: checking if Γ ` t :: τ for given Γ and τ

Ü type inference: computing Γ and τ such that Γ ` t :: τ

Type checking and type inference on λ→ are decidable.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
Γ ` t :: τ =⇒ ∃σ. Γ ` t :: σ ∧ (∀σ′. Γ ` t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

Ü type checking: checking if Γ ` t :: τ for given Γ and τ
Ü type inference: computing Γ and τ such that Γ ` t :: τ

Type checking and type inference on λ→ are decidable.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
Γ ` t :: τ =⇒ ∃σ. Γ ` t :: σ ∧ (∀σ′. Γ ` t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

Ü type checking: checking if Γ ` t :: τ for given Γ and τ
Ü type inference: computing Γ and τ such that Γ ` t :: τ

Type checking and type inference on λ→ are decidable.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about β reduction?

Definition of β reduction stays the same.

This property is called subject reduction

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about β reduction?

Definition of β reduction stays the same.

This property is called subject reduction

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: Γ ` s :: τ ∧ s −→β t =⇒ Γ ` t :: τ

This property is called subject reduction

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: Γ ` s :: τ ∧ s −→β t =⇒ Γ ` t :: τ

This property is called subject reduction

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about termination?

Ü =β is decidable
To decide if s =β t , reduce s and t to normal form (always exists,
because −→β terminates), and compare result.

Ü =αβη is decidable
This is why Isabelle can automatically reduce each term to βη normal
form.

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about termination?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

Ü =β is decidable
To decide if s =β t , reduce s and t to normal form (always exists,
because −→β terminates), and compare result.

Ü =αβη is decidable
This is why Isabelle can automatically reduce each term to βη normal
form.

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about termination?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

Ü =β is decidable
To decide if s =β t , reduce s and t to normal form (always exists,
because −→β terminates), and compare result.

Ü =αβη is decidable
This is why Isabelle can automatically reduce each term to βη normal
form.

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about termination?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

Ü =β is decidable
To decide if s =β t , reduce s and t to normal form (always exists,
because −→β terminates), and compare result.

Ü =αβη is decidable
This is why Isabelle can automatically reduce each term to βη normal
form.

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

Checkpoint:
Ü untyped lambda calculus is turing complete

(all computable functions can be expressed)
Ü but it is inconsistent
Ü λ→ ”fixes” the inconsistency problem by adding types
Ü Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ→!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

Checkpoint:
Ü untyped lambda calculus is turing complete

(all computable functions can be expressed)
Ü but it is inconsistent
Ü λ→ ”fixes” the inconsistency problem by adding types
Ü Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ→!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

Checkpoint:
Ü untyped lambda calculus is turing complete

(all computable functions can be expressed)
Ü but it is inconsistent
Ü λ→ ”fixes” the inconsistency problem by adding types
Ü Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ→!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

Checkpoint:
Ü untyped lambda calculus is turing complete

(all computable functions can be expressed)
Ü but it is inconsistent
Ü λ→ ”fixes” the inconsistency problem by adding types
Ü Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ→!
(non terminating functions cannot be expressed)

But wait...

typed functional languages are turing complete!

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

Checkpoint:
Ü untyped lambda calculus is turing complete

(all computable functions can be expressed)
Ü but it is inconsistent
Ü λ→ ”fixes” the inconsistency problem by adding types
Ü Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ→!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

So...
Ü typed functional languages are turing complete
Ü but λ→ is not...
Ü How does this work?

Ü By adding one single constant, the Y operator (fix point operator), to λ→

Ü This introduces the non-termination that the types removed.

Y :: (τ ⇒ τ)⇒ τ
Y t −→β t (Y t)

Fact: If we add Y to λ→ as the only constant, then each computable
function can be encoded as closed, type correct λ→ term.

Ü Y is used for recursion
Ü lose decidability (what does Y (λx . x) reduce to?)
Ü (Isabelle/HOL doesn’t have Y ; recursion is more restricted)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

So...
Ü typed functional languages are turing complete
Ü but λ→ is not...
Ü How does this work?
Ü By adding one single constant, the Y operator (fix point operator), to λ→

Ü This introduces the non-termination that the types removed.

Y :: (τ ⇒ τ)⇒ τ
Y t −→β t (Y t)

Fact: If we add Y to λ→ as the only constant, then each computable
function can be encoded as closed, type correct λ→ term.

Ü Y is used for recursion
Ü lose decidability (what does Y (λx . x) reduce to?)
Ü (Isabelle/HOL doesn’t have Y ; recursion is more restricted)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

So...
Ü typed functional languages are turing complete
Ü but λ→ is not...
Ü How does this work?
Ü By adding one single constant, the Y operator (fix point operator), to λ→

Ü This introduces the non-termination that the types removed.

Y :: (τ ⇒ τ)⇒ τ
Y t −→β t (Y t)

Fact: If we add Y to λ→ as the only constant, then each computable
function can be encoded as closed, type correct λ→ term.

Ü Y is used for recursion
Ü lose decidability (what does Y (λx . x) reduce to?)
Ü (Isabelle/HOL doesn’t have Y ; recursion is more restricted)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K
b ∈ {bool, int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set, list, . . .} type constructors
C ∈ {order, linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx . t)
v , x ∈ V , c ∈ C, V ,C sets of names

Ü type constructors: construct a new type out of a parameter type.
Example: int list

Ü type classes: restrict type variables to a class defined by axioms.
Example: α :: order

Ü schematic variables: variables that can be instantiated.

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K
b ∈ {bool, int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set, list, . . .} type constructors
C ∈ {order, linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx . t)
v , x ∈ V , c ∈ C, V ,C sets of names

Ü type constructors: construct a new type out of a parameter type.
Example: int list

Ü type classes: restrict type variables to a class defined by axioms.
Example: α :: order

Ü schematic variables: variables that can be instantiated.

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K
b ∈ {bool, int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set, list, . . .} type constructors
C ∈ {order, linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx . t)
v , x ∈ V , c ∈ C, V ,C sets of names

Ü type constructors: construct a new type out of a parameter type.
Example: int list

Ü type classes: restrict type variables to a class defined by axioms.
Example: α :: order

Ü schematic variables: variables that can be instantiated.

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K
b ∈ {bool, int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set, list, . . .} type constructors
C ∈ {order, linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx . t)
v , x ∈ V , c ∈ C, V ,C sets of names

Ü type constructors: construct a new type out of a parameter type.
Example: int list

Ü type classes: restrict type variables to a class defined by axioms.
Example: α :: order

Ü schematic variables: variables that can be instantiated.

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Classes

Ü similar to Haskell’s type classes, but with semantic properties
class order =

assumes order refl: ”x ≤ x”
assumes order trans: ”[[x ≤ y ; y ≤ z]] =⇒ x ≤ z”
. . .

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Classes

Ü similar to Haskell’s type classes, but with semantic properties
class order =

assumes order refl: ”x ≤ x”
assumes order trans: ”[[x ≤ y ; y ≤ z]] =⇒ x ≤ z”
. . .

Ü theorems can be proved in the abstract
lemma order less trans: ”

∧
x ::′a :: order . [[x < y ; y < z]] =⇒ x < z”

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Classes

Ü similar to Haskell’s type classes, but with semantic properties
class order =

assumes order refl: ”x ≤ x”
assumes order trans: ”[[x ≤ y ; y ≤ z]] =⇒ x ≤ z”
. . .

Ü theorems can be proved in the abstract
lemma order less trans: ”

∧
x ::′a :: order . [[x < y ; y < z]] =⇒ x < z”

Ü can be used for subtyping
class linorder = order +

assumes linorder linear: ”x ≤ y ∨ y ≤ x”

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Classes

Ü similar to Haskell’s type classes, but with semantic properties
class order =

assumes order refl: ”x ≤ x”
assumes order trans: ”[[x ≤ y ; y ≤ z]] =⇒ x ≤ z”
. . .

Ü theorems can be proved in the abstract
lemma order less trans: ”

∧
x ::′a :: order . [[x < y ; y < z]] =⇒ x < z”

Ü can be used for subtyping
class linorder = order +

assumes linorder linear: ”x ≤ y ∨ y ≤ x”

Ü can be instantiated
instance nat :: ”{order, linorder}” by . . .

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Schematic Variables

X Y
X ∧ Y

Ü X and Y must be instantiated to apply the rule

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Schematic Variables

X Y
X ∧ Y

Ü X and Y must be instantiated to apply the rule

But: lemma “x + 0 = 0 + x”

Ü x is free
Ü convention: lemma must be true for all x
Ü during the proof, x must not be instantiated

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Schematic Variables

X Y
X ∧ Y

Ü X and Y must be instantiated to apply the rule

But: lemma “x + 0 = 0 + x”

Ü x is free
Ü convention: lemma must be true for all x
Ü during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:
?X∧?Y =αβη x ∧ x

[?X ← x , ?Y ← x]

?P x =αβη x ∧ x

[?P ← λx . x ∧ x]

P (?f x) =αβη ?Y x

[?f ← λx . x , ?Y ← P]

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:
?X∧?Y =αβη x ∧ x [?X ← x , ?Y ← x]
?P x =αβη x ∧ x [?P ← λx . x ∧ x]
P (?f x) =αβη ?Y x [?f ← λx . x , ?Y ← P]

Higher Order: schematic variables can be functions.

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Ü Unification modulo αβ (Higher Order Unification) is semi-decidable

Ü Unification modulo αβη is undecidable
Ü Higher Order Unification has possibly infinitely many solutions

But:
Ü Most cases are well-behaved
Ü Important fragments (like Higher Order Patterns) are decidable

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Ü Unification modulo αβ (Higher Order Unification) is semi-decidable
Ü Unification modulo αβη is undecidable

Ü Higher Order Unification has possibly infinitely many solutions

But:
Ü Most cases are well-behaved
Ü Important fragments (like Higher Order Patterns) are decidable

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Ü Unification modulo αβ (Higher Order Unification) is semi-decidable
Ü Unification modulo αβη is undecidable
Ü Higher Order Unification has possibly infinitely many solutions

But:
Ü Most cases are well-behaved
Ü Important fragments (like Higher Order Patterns) are decidable

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Ü Unification modulo αβ (Higher Order Unification) is semi-decidable
Ü Unification modulo αβη is undecidable
Ü Higher Order Unification has possibly infinitely many solutions

But:
Ü Most cases are well-behaved

Ü Important fragments (like Higher Order Patterns) are decidable

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Ü Unification modulo αβ (Higher Order Unification) is semi-decidable
Ü Unification modulo αβη is undecidable
Ü Higher Order Unification has possibly infinitely many solutions

But:
Ü Most cases are well-behaved
Ü Important fragments (like Higher Order Patterns) are decidable

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Ü Unification modulo αβ (Higher Order Unification) is semi-decidable
Ü Unification modulo αβη is undecidable
Ü Higher Order Unification has possibly infinitely many solutions

But:
Ü Most cases are well-behaved
Ü Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

Ü is a term in β normal form where

Ü each occurrence of a schematic variable is of the form ?f t1 . . . tn
Ü and the t1 . . . tn are η-convertible into n distinct bound variables

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

Ü Simply typed lambda calculus: λ→

Ü Typing rules for λ→, type variables, type contexts
Ü β-reduction in λ→ satisfies subject reduction
Ü β-reduction in λ→ always terminates
Ü Types and terms in Isabelle

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

Ü Simply typed lambda calculus: λ→

Ü Typing rules for λ→, type variables, type contexts

Ü β-reduction in λ→ satisfies subject reduction
Ü β-reduction in λ→ always terminates
Ü Types and terms in Isabelle

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

Ü Simply typed lambda calculus: λ→

Ü Typing rules for λ→, type variables, type contexts
Ü β-reduction in λ→ satisfies subject reduction

Ü β-reduction in λ→ always terminates
Ü Types and terms in Isabelle

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

Ü Simply typed lambda calculus: λ→

Ü Typing rules for λ→, type variables, type contexts
Ü β-reduction in λ→ satisfies subject reduction
Ü β-reduction in λ→ always terminates

Ü Types and terms in Isabelle

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

Ü Simply typed lambda calculus: λ→

Ü Typing rules for λ→, type variables, type contexts
Ü β-reduction in λ→ satisfies subject reduction
Ü β-reduction in λ→ always terminates
Ü Types and terms in Isabelle

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

