COMP4161
Advanced Topics in Software
Verification

)\%

Thomas Sewell, Miki Tanaka, Rob Sison
T3/2024

Last time...

A calculus syntax

free variables, substitution

3 reduction

« and n conversion

/3 reduction is confluent

A calculus is expressive (Turing complete)
A calculus is inconsistent (as a logic)

diiiiil

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Content

=» Foundations & Principles

Intro, Lambda calculus, natural deduction
Higher Order Logic, Isar (part 1)
Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
(2,37]
(3.4]

(4.5]
(5.7]
(7]
(8°]
(8.9]
[9,10]
[10°]

Zal due; Pa2 due; °a3 due

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

) calculus is inconsistent

Can find term R such that R R =3 not(R R)

There are more terms that do not make sense:
12, true false, etc.

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

) calculus is inconsistent

Can find term R such that R R =3 not(R R)

There are more terms that do not make sense:
12, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” A term.
Examples:

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” A term.

Examples:
= for tfermt has type o write t: «

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” A term.

Examples:

= for tfermt has type o write t: «
=» if x has type o then Ax. x is a function from o to «
Write: (AX. X) ta =«

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” A term.

Examples:

= for tfermt has type o write t: «

=» if x has type o then Ax. x is a function from o to «
Write: (AX. X) ta =«

= for st tobe sensible:
s must be a function
t must be right type for parameter

fs:a=pandt:athen(st):p

5 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

THAT’S ABOUT IT

NOW FORMALLY AGAIN

Syntax for A\~

Terms: ¢ == v | c | (tt) | (Ax. 1)
v,xeV, ceC, V,C setsofnames

Types: 7 = b | v | T =T
b € {bool, int,...} base types
v €{a,p,...} type variables

a=pB=v = a=(=7)

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Syntax for A~

Terms: ¢ == v | c | (tt) | (Ax. 1)
v,xeV, ceC, V,C setsofnames

Types: 7 = b | v | T =T
b € {bool, int,...} base types
v €{a,p,...} type variables

a=pB=v = a=(=7)

Context I':

I': function from variable and constant names to types.

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Syntax for A~

Terms: ¢ == v | c | (tt) | (Ax. 1)
v,xeV, ceC, V,C setsofnames

Types: 7 = b | v | T =T
b € {bool, int,...} base types
v €{a,p,...} type variables

a=pB=v = a=(=7)

Context I':

I': function from variable and constant names to types.

Term t has type 7 in context I': [

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

M= (x. x) =

Examples

NrN-Ox.x)ta=a

[y < int]Fy =

Examples

NrN-Ox.x)ta=a

[y « int]F y = int

[z bool]F (\y.y) z:

Examples

N(x. x)a=a
[y « int]F y = int
[z + bool] F (\y. y) Z :: bool

[[FMx fx:

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

N(x. x)a=a
[y « int]F y = int
[z + bool] F (\y. y) Z :: bool

[FXMx.fx:(a=p)=>a=0

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

N(x. x)a=a

[y « int]F y = int

[z + bool] F (\y. y) Z :: bool
[FMx fx:(a=p0)=a=0

A term t is well typed or type correct
ifthereare ' and r suchthat'-t:: 7

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: M- x:(x)

Type Checking Rules

Variables: M= x:M(x)

Application: TF(hh)r

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: M= x:M(x)

I'I—t1::72:>7 I'I—t2::72
Fr=(h &)

Application:

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: M- x:M(x)

I'I—t1::72:>7 I'I—t2::72
Fr=(h &)

Application:

Abstraction:

FrE(\x.) urm=r7

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: M- x:M(x)

I'I—t1::72:>7 I'I—t2::72
Fr=(h &)

Application:

Mx <« 7|kt

Abstraction:
FrE(\x.) urm=r7

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example Type Derivation:

NFAy. x: Abs
Remember:
e Var TPhie=T Thkin Mx <« m]Ftar
Mex:r(x) Nr-(t k)T r}—(x\X.t)::TX:>TAbS

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example Type Derivation:

[X <~ a]FAy. x = '2[;3

[FAXy. x:a= S
Remember:
e Var [Phie=T Thkin Mx < m]Ftar
Mex:r(x) Nr-(t k)T FrEQx.t) =71 Abs

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example Type Derivation:

[x<—a]|—)\y.x::5:>a':zs

IFXy. x:ta= =« S
Remember:
e Var [Phie=T Thkin Mx < m]Ftar
Mex:r(x) Nr-(t k)T r}—(x\X.t)::TX:>TAbS

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example Type Derivation:

X—ay«plExta var
Abs
[X<—a]|—)\y.x::5:aAb
JFXxy. x:ta=8=a« S
Remember:
e Var [PhieoT Thkn Mx < m]Ftar
Mex:r(x) Nr-(t k)T r}—(x\X.t)::TX:>TAbS

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

[F X fxx: Abs
Remember:
- vy THbhuim=7 L Mx «n]bFtor
Mex:r(x) =t e):r r}—(/\X.t)::TX:>7—AbS

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

[]FAfX.fXX::(a:>a:>ﬁ):>a:>ﬁAbS

Remember:

- Vg TFhuim=7 TFbum Mx« m]Ftor
Mex:r(x) —
N=(t k)T TEOX0) =7

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Abs

[fa=a=plFXfxx:a=0
Abs

JFMx.fxx:(a=a=p)=a=0

Remember:

Vg Chum=7 b Mx<+< m]FtaT
MNex:r(x) — -
FTE(tb)oT FrFOx.t)om =71

Abs

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Fr-fxx:p
[fa=a=plFXfxx:a=0
[FEXMXx. fxx:(a=a=0)=a=p

r=[f+a=a=3,x+ q

Remember:

— Var TFthin=7 TFb:m Mx«] Ftor
Mex:r(x) —
M=(tb)or TEOX D) =7

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

N-fx:a=p App
MrM-fxx::p
[fa=a=plFXfxx:a=0
JFMx.fxx:(a=a=p)=a=0

r=[f+a=a=3x+q]

Remember:

— Var TFhuin=>7 TFb:m Mx« m]Ftor
Mex:r(x) —
M=(t k)T TEOX D) =7

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

AP g Ver

App

Abs
Abs

N-fx:a=p
MrM-fxx::p
[fa=a=plFXfxx:a=0
JFMx.fxx:(a=a=p)=a=0

r=[f+a=a=3x+q]

Remember:

— Var TFhuin=>7 TFb:m Mx« m]Ftor
Mex:r(x) —
M=(t k)T TEOX D) =7

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Nrfra=(a=p) Var A
N-fx:a=p Pp H—X::ozXar
MrM-fxx::p Ab PP
fa=a=0lF X fxx:a=p4 AZ
JFMx.fxx:(a=a=p)=a=0 S
r=[f+a=a=3x+q]
Remember:
- Var ThFhim=71 ThEbum Mx<+ n~]FtaT
MEx:r(x) TF(tb)or T ELES e

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

Nrfra=(a=p) Var N-x:« var

N-fx:a=p App MN=x:a
MrM-fxx::p
[fa=a=plFXfxx:a=0
JFMx.fxx:(a=a=p)=a=0

Var
App

Abs
Abs

r=[f+a=a=3x+q]

Remember:

Vg Chum=7 b Mx<+ n~]FtaT
Mex:r(x) — -
FTE(tb)oT TrFOx.t)om =71

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: []F Ax. X :: bool = bool
IFMxta=a

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: []F Ax. X :: bool = bool
IFMxta=a

Some types are more general than others:

T < o ifthereis a substitution S such that = S(o)

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: []F Ax. X :: bool = bool
IFMxta=a

Some types are more general than others:

T < o ifthereis a substitution S such that = S(o)

Examples:

int =bool < a=p

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: []F Ax. X :: bool = bool
IFMxta=a

Some types are more general than others:

T < o ifthereis a substitution S such that = S(o)

Examples:

int=bool < a=f < =«

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: []F Ax. X :: bool = bool
IFMxta=a

Some types are more general than others:

T < o ifthereis a substitution S such that = S(o)

Examples:

int=bool < a=f < f=a £ a=a«a

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types
Fact: each type correct term has a most general type

Formally:
lrter = JoTktioANo'. THEt: 0 = 0’ <o)

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
lrter = JoTktioANo'. THEt: 0 = 0’ <o)

It can be found by executing the typing rules backwards.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
lrter = JoTktioANo'. THEt: 0 = 0’ <o)
It can be found by executing the typing rules backwards.

=» type checking: checking if I' - ¢ :: 7 for given I and

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
lrter = JoTktioANo'. THEt: 0 = 0’ <o)

It can be found by executing the typing rules backwards.

=» type checking: checking if I' - ¢ :: 7 for given I and
=>» type inference: computing ' and 7 such that M+t :: 7

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
lrter = JoTktioANo'. THEt: 0 = 0’ <o)

It can be found by executing the typing rules backwards.

=>» type checking: checking if ' -t :: 7 for given I and
=>» type inference: computing ' and 7 such that M+t :: 7

Type checking and type inference on A\~ are decidable.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about 5 reduction?

What about 5 reduction?

Definition of [reduction stays the same.

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about 3 reduction?

Definition of [reduction stays the same.

Fact: Well typed terms stay well typed during 3 reduction

Formally: FlEsuT ANs—pgt=TFturT

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about 3 reduction?

Definition of [reduction stays the same.

Fact: Well typed terms stay well typed during 3 reduction
Formally: FlEsuT ANs—pgt=TFturT

This property is called subject reduction

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about termination?

What about termination?

[reduction in A\~ always terminates.

(Alan Turing, 1942)

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about termination?

[reduction in A\~ always terminates.

(Alan Turing, 1942)

-» =3 is decidable
To decide if s =g t, reduce s and t to normal form (always exists,
because — 3 terminates), and compare result.

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about termination?

[reduction in A\~ always terminates.

(Alan Turing, 1942)

-» =3 is decidable
To decide if s =g t, reduce s and t to normal form (always exists,
because — 3 terminates), and compare result.

= =.3, is decidable
This is why Isabelle can automatically reduce each term to 57 normal
form.

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
-»)\~ "fixes” the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
-»)\~ "fixes” the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

Not all computable functions can be expressed in A~!
(non terminating functions cannot be expressed)

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
-»)\~ "fixes” the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

Not all computable functions can be expressed in A~!
(non terminating functions cannot be expressed)

But wait...

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
-»)\~ "fixes” the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

Not all computable functions can be expressed in A~!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

What does this mean for Expressiveness?

So...
=» typed functional languages are turing complete
=» but A™ is not...
=» How does this work?

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

So...
=» typed functional languages are turing complete
=» but A™ is not...
=» How does this work?
=» By adding one single constant, the Y operator (fix point operator), to A\~
=» This introduces the non-termination that the types removed.

Yi(r=71)=>7
Yt—pt(Y)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

So...
=» typed functional languages are turing complete
=» but A™ is not...
=» How does this work?
=» By adding one single constant, the Y operator (fix point operator), to A\~
=» This introduces the non-termination that the types removed.

Yi(r=71)=>7
Yt—pt(Yl)

Fact: If we add Y to A~ as the only constant, then each computable
function can be encoded as closed, type correct A~ term.

=» Y is used for recursion
-» lose decidability (what does Y (Ax. x) reduce to?)
=» (Isabelle/HOL doesn’t have Y'; recursion is more restricted)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

Types and Terms in Isabelle

Types: 7 :=bdb | v |vuC|7=71|(r....,T)K
b € {bool,int,...} base types
ve{a,p,...} type variables
K € {set,list,...} type constructors
C € {order, linord, ...} type classes

Terms: t == v |c| v]| (tt) | (Ax. 1)
v,xeV, ceC, V,C setsofnames

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Types and Terms in Isabelle

Types: 7 == b | v | vaC |7 =71](1,...

b € {bool,int,...} base types
ve{a,p,...} type variables

K € {set,list,...} type constructors
C € {order, linord, ...} type classes

Terms: t == v |c| v]| (tt) | (Ax. 1)

v,xeV, ceC, V,C setsofnames

=» type constructors: construct a new type out of a parameter type.

Example: int 1list

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Types and Terms in Isabelle

Types: 7 == b | v | vaC |7 =71](1,...

b € {bool,int,...} base types
ve{a,p,...} type variables

K € {set,list,...} type constructors
C € {order, linord, ...} type classes

Terms: t == v |c| v]| (tt) | (Ax. 1)

v,xeV, ceC, V,C setsofnames

=» type constructors: construct a new type out of a parameter type.

Example: int 1list

=>» type classes: restrict type variables to a class defined by axioms.

Example: « :: order

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Types and Terms in Isabelle

Types: 7 == b | v | vaC |7 =71](1,...

b € {bool,int,...} base types
ve{a,p,...} type variables

K € {set,list,...} type constructors
C € {order, linord, ...} type classes

Terms: t == v |c| v]| (tt) | (Ax. 1)

v,xeV, ceC, V,C setsofnames

=» type constructors: construct a new type out of a parameter type.

Example: int 1list

=>» type classes: restrict type variables to a class defined by axioms.

Example: « :: order

-» schematic variables: variables that can be instantiated.

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: " x < x”
assumes order_trans: "[x < y;y < z] = x < 2"

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: " x < x”
assumes order_trans: "[x < y;y < z] = x < 2"

=» theorems can be proved in the abstract
lemma order_less_trans: " A x :'a:order. [x <y;y <z] = x < 2"

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: " x < x”
assumes order_trans: "[x < y;y < z] = x < 2"

=» theorems can be proved in the abstract
lemma order_less_trans: " A x :'a:order. [x <y;y <z] = x < 2"
=» can be used for subtyping

class linorder = order +
assumes linorder_linear: "x <y vy < x"

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Type Classes

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: " x < x”
assumes order_trans: "[x < y;y < z] = x < 2"

=» theorems can be proved in the abstract
lemma order_less_trans: " A x :'a:order. [x <y;y <z] = x < 2"
=» can be used for subtyping

class linorder = order +
assumes linorder_linear: "x <y vy < x"
=» can be instantiated

instance nat :: " {order, linorder}" by ...

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Schematic Variables

X Y
XANY

=» X and Y must be instantiated to apply the rule

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Schematic Variables

XY
XANY

=» X and Y must be instantiated to apply the rule

But: lemma “x+0=0+x"

=> xis free
=» convention: lemma must be true for all x
=» during the proof, x must not be instantiated

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Schematic Variables

XY
XANY

=» X and Y must be instantiated to apply the rule

But: lemma “x+0=0+x"

= xis free
=» convention: lemma must be true for all x
=>» during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o ()

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o ()

In Isabelle:
Find substitution ¢ on schematic variables such that o(s) =.s, o(t)

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o ()

In Isabelle:
Find substitution ¢ on schematic variables such that o(s) =.s, o(t)

Examples:
IXATY =agp XAX
P x =aBn XNAX

P(?fx) =apy 7YX

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that o(s) = o ()

In Isabelle:
Find substitution ¢ on schematic variables such that o(s) =.s, o(t)

Examples:
IXNYY =4y XAX [?X < x,7Y «+ X]
7P x =apy XAX [?P < Ax. x A X]
P(?fx) =apy 7YX [?f < AX. x,?Y < P]

Higher Order: schematic variables can be functions.

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW
¢

Higher Order Unification

=» Unification modulo 3 (Higher Order Unification) is semi-decidable

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

=» Unification modulo 3 (Higher Order Unification) is semi-decidable
=» Unification modulo a7 is undecidable

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

=» Unification modulo 3 (Higher Order Unification) is semi-decidable
=» Unification modulo a7 is undecidable
=>» Higher Order Unification has possibly infinitely many solutions

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

=» Unification modulo 3 (Higher Order Unification) is semi-decidable
=» Unification modulo a7 is undecidable
=>» Higher Order Unification has possibly infinitely many solutions

But:
-» Most cases are well-behaved

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

=» Unification modulo 3 (Higher Order Unification) is semi-decidable
=» Unification modulo a7 is undecidable
=>» Higher Order Unification has possibly infinitely many solutions

But:

=» Most cases are well-behaved
=» Important fragments (like Higher Order Patterns) are decidable

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

=» Unification modulo 3 (Higher Order Unification) is semi-decidable

=» Unification modulo a7 is undecidable
=>» Higher Order Unification has possibly infinitely many solutions

But:

=» Most cases are well-behaved
=» Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

=» isatermin 8 normal form where
=» each occurrence of a schematic variable is of the form ?f t; ... t,
=» andthe t; ... t, are n-convertible into n distinct bound variables

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

-> Simply typed lambda calculus: A~

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

=» Simply typed lambda calculus: \™
-» Typing rules for A7, type variables, type contexts

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

-» Simply typed lambda calculus: A~
-» Typing rules for A7, type variables, type contexts
=» (-reduction in A\ satisfies subject reduction

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

-» Simply typed lambda calculus: A~

-» Typing rules for A7, type variables, type contexts
=» (-reduction in A\ satisfies subject reduction

=» B-reduction in A7 always terminates

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

We have learned so far...

-» Simply typed lambda calculus: A~

-» Typing rules for A7, type variables, type contexts
=» (-reduction in A\ satisfies subject reduction

=» B-reduction in A7 always terminates

=>» Types and terms in Isabelle

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

