COMP4161 Advanced Topics in Software Verification

Thomas Sewell, Miki Tanaka, Rob Sison T3/2024

Last time...

- $\rightarrow \lambda$ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- $\rightarrow \alpha$ and η conversion
- \rightarrow β reduction is confluent
- $\rightarrow \lambda$ calculus is expressive (Turing complete)
- \rightarrow λ calculus is inconsistent (as a logic)

Content

→ Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
Term rewriting	[3,4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	$[8^{b}]$
 Hoare logic, proofs about programs, invariants 	[8,9]
C verification	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

λ calculus is inconsistent

Can find term R such that $R R =_{\beta} not(R R)$

There are more terms that do not make sense: 12, true false, etc.

Solution: rule out ill-formed terms by using types. (Church 1940)

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

- \rightarrow for term t has type α write $t :: \alpha$
- ightharpoonup if x has type α then λx . x is a function from α to α Write: $(\lambda x. x) :: \alpha \Rightarrow \alpha$
- → for st to be sensible: s must be a function t must be right type for parameter

```
If s :: \alpha \Rightarrow \beta and t :: \alpha then (s t) :: \beta
```

THAT'S ABOUT IT

NOW FORMALLY AGAIN

Syntax for λ^{\rightarrow}

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

Types:
$$\tau$$
 ::= b | ν | $\tau \Rightarrow \tau$ b $\in \{\text{bool}, \text{int}, \ldots\}$ base types $\nu \in \{\alpha, \beta, \ldots\}$ type variables $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Context Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ : $\Gamma \vdash t :: \tau$

Examples

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \text{int}] \vdash y :: \text{int}$$

$$[z \leftarrow \text{bool}] \vdash (\lambda y. \ y) \ z :: \text{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

A term t is **well typed** or **type correct** if there are Γ and τ such that $\Gamma \vdash t :: \tau$

Type Checking Rules

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$$

Abstraction:
$$\frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau}$$

Example Type Derivation:

$$\frac{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha} \begin{array}{l} \textit{Var} \\ \textit{Abs} \\ \boxed{[\vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha} \end{array}$$

Remember:

$$\frac{}{\Gamma \vdash x :: \Gamma(x)} \ \textit{Var} \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Abp}$$

More complex Example

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, \mathbf{x} \leftarrow \alpha]$$

Remember:

More general Types

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

Examples:

$$\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad \nleq \quad \alpha \Rightarrow \alpha$$

Most general Types

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \implies \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- **→ type checking:** checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- **→ type inference:** computing Γ and τ such that $\Gamma \vdash t :: \tau$

Type checking and type inference on λ^{\rightarrow} are decidable.

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally:
$$\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$$

This property is called **subject reduction**

What about termination?

β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

- \Rightarrow = $_{\beta}$ is decidable
 - To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.
- \Rightarrow = $_{\alpha\beta\eta}$ is decidable This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

What does this mean for Expressiveness?

Checkpoint:

- untyped lambda calculus is turing complete (all computable functions can be expressed)
- → but it is inconsistent
- \rightarrow λ^{\rightarrow} "fixes" the inconsistency problem by adding types
- → Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ^{\rightarrow} ! (non terminating functions cannot be expressed)

But wait... typed functional languages are turing complete!

What does this mean for Expressiveness?

So...

- → typed functional languages are turing complete
- \rightarrow but λ^{\rightarrow} is not...
- → How does this work?
- ightharpoonup By adding one single constant, the Y operator (fix point operator), to $\lambda^{
 ightharpoonup}$
- → This introduces the non-termination that the types removed.

$$Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$$

 $Y t \longrightarrow_{\beta} t (Y t)$

Fact: If we add Y to λ^{\rightarrow} as the only constant, then each computable function can be encoded as closed, type correct λ^{\rightarrow} term.

- → Y is used for recursion
- \rightarrow lose decidability (what does $Y(\lambda x. x)$) reduce to?)

Types and Terms in Isabelle

Types:
$$\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \ldots, \tau) K$$
 $b \in \{bool, int, \ldots\}$ base types $\nu \in \{\alpha, \beta, \ldots\}$ type variables $K \in \{set, list, \ldots\}$ type constructors $C \in \{order, linord, \ldots\}$ type classes

Terms:
$$t ::= v \mid c \mid ?v \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

- → type constructors: construct a new type out of a parameter type.
 - Example: int list
- → type classes: restrict type variables to a class defined by axioms.
 - Example: $\alpha :: order$
- → schematic variables: variables that can be instantiated.

Type Classes

→ similar to Haskell's type classes, but with semantic properties

```
class order = assumes order_refl: "x \le x" assumes order_trans: "[x \le y; y \le z] \implies x \le z"
```

→ theorems can be proved in the abstract

lemma order_less_trans:

"
$$\land x ::'a :: order. [x < y; y < z] \Longrightarrow x < z$$
"

→ can be used for subtyping

```
class linorder = order + assumes linorder_linear: "x \le y \lor y \le x"
```

→ can be instantiated instance nat :: "{order, linorder}" by ...

Schematic Variables

$$\frac{X}{X \wedge Y}$$

→ X and Y must be **instantiated** to apply the rule

But: lemma "
$$x + 0 = 0 + x$$
"

- \rightarrow x is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$\begin{array}{lll} ?X \wedge ?Y &=_{\alpha\beta\eta} & x \wedge x & [?X \leftarrow x, ?Y \leftarrow x] \\ ?P & &=_{\alpha\beta\eta} & x \wedge x & [?P \leftarrow \lambda x. \ x \wedge x] \\ P & (?f \ x) &=_{\alpha\beta\eta} & ?Y \ x & [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P] \end{array}$$

Higher Order: schematic variables can be functions.

Higher Order Unification

- ightharpoonup Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- → each occurrence of a schematic variable is of the form ?f t₁ ... t_n
- \rightarrow and the $t_1 \ldots t_n$ are η -convertible into n distinct bound variables

We have learned so far...

- → Simply typed lambda calculus: λ[→]
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

