COMP4161
Advanced Topics in Software
Verification

)\%

Thomas Sewell, Miki Tanaka, Rob Sison
T3/2024

Last time...

A calculus syntax

free variables, substitution

B reduction

a and n conversion

[reduction is confluent

A calculus is expressive (Turing complete)
A calculus is inconsistent (as a logic)

dii il

2 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Content

=» Foundations & Principles

Intro, Lambda calculus, natural deduction
Higher Order Logic, Isar (part 1)
Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
(2,37
(3.4]

(4.5]
(5.7]
[7]
[8°]
(8,9]
[9,10]
[10°]

231 due; Pa2 due; a3 due

3 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

) calculus is inconsistent

Can find term R such that R R =5 not(R R)

There are more terms that do not make sense:
12, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

4 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Introducing types

Idea: assign a type to each “sensible” X term.

Examples:

= for termt has type a write t:: «

=» if x has type o then Ax. x is a function from a to «
Write: (Ax. X) ta =«

= for st tobe sensible:
s must be a function
t must be right type for parameter

lfs:a=pgandt: athen(st):p

5| COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

THAT’S ABOUT IT

NOW FORMALLY AGAIN

Syntax for A~

Terms: t == v | ¢ | (t1)

| (Ax. 1)
v,xeV, ceC, V.Cs

ets of names
Types: 7 = b | v |7 =7

b € {bool, int,...} base types

v e {a,p,...} type variables

a=pf=y = a= (=)

Context I':

I: function from variable and constant names to types.

Term t has type 7 in context I': Fr=tor

8 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Examples

NrN=(Ax.x)ta=a

[y < int]F y :rint

[Z < bool] - (Ay. y) Z :: bool
[FMx. fx:(a=p)=a=p

A term t is well typed or type correct
if there are I and 7 suchthat"' -+t :: 7

9 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Checking Rules

Variables: M x o (x)
D Nl om=7 Nkb:m
Application: Te(h) r
r Fite
Abstraction: X = 7] T

FrE(Xx.) =>r71

10 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Example Type Derivation:

[X —a,y+ plE X« \//:Z
X —a]lFAy. x:8=a S
Abs

[FXXy.x:a=p=a«a

Remember:

— _Var TFhim=T ThbLum Mx <+ m]Ftor
MNe=x:M(x) - -
(k)T FrEAx.t) =71

11 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More complex Example

N=fra=(a=p) var N=x:a var
NrN-frxca=p App Fl—X::avar
lr-fxx:=:p Ap.
[f<—a:>a:>6]l—)\x.fxx::a:>ﬁAbs
Abs

[FMx.fxx:(a=a=8)=a=p

N=[f+~a=a=p,x+q]

Remember:

12 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

More general Types

A term can have more than one type.

Example: [|F Ax. x :: bool = bool
[FXX. x:a=«a

Some types are more general than others:

T < o ifthere is a substitution S such that 7 = S(o)

Examples:

int =>bool < a=pf < f=a £ a=a«a

13 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Most general Types

Fact: each type correct term has a most general type

Formally:
rctor = JolTktioAnNM'.THt:o = o' <o)

It can be found by executing the typing rules backwards.

=>» type checking: checking if [+t :: 7 for given I and 7
=» type inference: computing I' and 7 such that ' ¢t :: 7

Type checking and type inference on A\~ are decidable.

14 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

What about 3 reduction?

Definition of (5 reduction stays the same.

Fact: Well typed terms stay well typed during S reduction
Formally: Ns:7 As—pgt=TkFtur

This property is called subject reduction

15 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What about termination?

0 reduction in A always terminates.

(Alan Turing, 1942)

=» =3 is decidable
To decide if s =4 t, reduce s and t to normal form (always exists,
because — 4 terminates), and compare result.

= =,3, is decidable
This is why Isabelle can automatically reduce each term to gn
normal form.

16 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

What does this mean for Expressiveness?

Checkpoint:
=» untyped lambda calculus is turing complete
(all computable functions can be expressed)
=» but it is inconsistent
=>)\~ "fixes” the inconsistency problem by adding types
=» Problem: it is not turing complete anymore!

Not all computable functions can be expressed in \ ™!
(non terminating functions cannot be expressed)

But wait... typed functional languages are turing
complete!

17 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

What does this mean for Expressiveness?

So...
=» typed functional languages are turing complete
=» but A7 is not...
=» How does this work?
=» By adding one single constant, the Y operator (fix point
operator), to A~
=» This introduces the non-termination that the types removed.

Y (r=1)=>71
Yit—st(Y0)

Fact: If we add Y to A" as the only constant, then each
computable function can be encoded as closed, type correct
A7 term.

=» Y is used for recursion

=» lose decidability (what does Y (Ax. x) reduce to?)

18 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Types and Terms in Isabelle

Types: 7 == b | v |vauC|7=>7](r....7)K
b € {bool, int, ...} base types
v e {a,pB,...} type variables
K € {set,1list,...} type constructors
C € {order, linord, ...} type classes

Terms: == v |c|?v]| (tt) | (Mx. 1)
v,xeV, ceC, V,C setsofnames

=» type constructors: construct a new type out of a parameter
type.
Example: int list

=>» type classes: restrict type variables to a class defined by
axioms.
Example: « :: order

=» schematic variables: variables that can be instantiated.

19 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Type Classes

=» similar to Haskell’s type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x < y;y < z] = x < Z"

=» theorems can be proved in the abstract

lemma order_less_trans:
"Ax:azorder. [x<y,;y<zl =x<Z2'
=» can be used for subtyping
class linorder = order +
assumes linorder_linear: "x <y vy < x"
=» can be instantiated

instance nat :: " {order, linorder}” by ...

20 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Schematic Variables

XY
XNY

=» X and Y must be instantiated to apply the rule

But: lemma “x+0=0+ x"

-> xis free
=» convention: lemma must be true for all x
=» during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

21 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

Higher Order Unification

Unification:
Find substitution o on variables for terms s, t such that
o(s) =oa(t)

In Isabelle:
Find substitution o on schematic variables such that

a(8) =apn o(t)

Examples:
IXATY =apy XAX [?X < x,?7Y + X]
7P x =afy XNX [?P < Ax. x A X]
P(?fx) =asy ?YX [?f < Ax. x,?Y « P]

Higher Order: schematic variables can be functions.

22 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

Higher Order Unification

=» Unification modulo «8 (Higher Order Unification) is
semi-decidable

=» Unification modulo «87 is undecidable

-» Higher Order Unification has possibly infinitely many solutions

But:
=» Most cases are well-behaved
=» Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

=» is atermin 8 normal form where

=» each occurrence of a schematic variable is of the form
?f t‘] . e tn

=» andthe ty ... t, are p-convertible into n distinct bound variables

23 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License UNSW

We have learned so far...

=» Simply typed lambda calculus: A~

=» Typing rules for A7, type variables, type contexts
=» j-reduction in A~ satisfies subject reduction

=» [B-reduction in A~ always terminates

=» Types and terms in Isabelle

24 | COMP4161| T Sewell, M Tanaka, R Sison CC-BY-4.0 License

