COMP4161 S2/2014 Advanced Topics in Software Verification

Exam Solution

Toby Murray

October 21, 2015

1 Lambda Calculus

Consider the term $\lambda a \ b. \ b \ (\lambda x. \ x \ a)$

(a) What is its $\beta\eta$ -normal form?

Solution:

This term is already in $\beta\eta$ -normal form.

(b) What is its type?

Solution:

$$\alpha \Rightarrow (((\alpha \Rightarrow \beta) \Rightarrow \beta) \Rightarrow \gamma) \Rightarrow \gamma$$

(c) Provide a step-by-step derivation of its type.

Solution:

Let
$$\Gamma = [a \leftarrow \alpha, \ b \leftarrow ((\alpha \Rightarrow \beta) \Rightarrow \beta) \Rightarrow \gamma]$$
 and $\Gamma' = \Gamma[x \leftarrow \alpha \Rightarrow \beta]$

$$\frac{\Gamma \vdash b :: ((\alpha \Rightarrow \beta) \Rightarrow \beta) \Rightarrow \gamma}{\Gamma \vdash b :: ((\alpha \Rightarrow \beta) \Rightarrow \beta) \Rightarrow \gamma} \bigvee_{\substack{\Gamma' \vdash \alpha :: \alpha \Rightarrow \beta \\ \hline \Gamma \vdash (\lambda x. \ x \ a) :: (\alpha \Rightarrow \beta) \Rightarrow \beta \\ \hline \Gamma \vdash b \ (\lambda x. \ x \ a) :: \gamma} \xrightarrow{\substack{\Gamma \vdash b \ (\lambda x. \ x \ a) :: \gamma \\ \hline [] \vdash \lambda a \ b. \ b \ (\lambda x. \ x \ a) :: \alpha \Rightarrow (((\alpha \Rightarrow \beta) \Rightarrow \beta) \Rightarrow \gamma) \Rightarrow \gamma} \xrightarrow{\text{Abs}} (x2)$$

2 Induction

See the Isabelle theory.

3 C Verification

See the Isabelle theory.