COMP4161: Advanced Topics in Software Verification

Isar

DATA

61

Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka S2/2018

data61.csiro.au

Content

 \blacksquare

^aa1 due; ^ba2 due; ^ca3 due

A Language for Structured Proofs

Is this true: $(A \rightarrow B) = (B \vee \neg A)$?

4 | COMP4161 | (C) Data61, CSIRO: provided under Creative Commons Attribution License

Is this true: $(A \rightarrow B) = (B \vee \neg A)$? YES!

apply (rule iffI) apply (cases A) apply (rule disjI1) apply (erule impE) apply assumption apply assumption apply (rule disjI2) apply assumption apply (rule impI) apply (erule disjE) apply assumption apply (erule notE) apply assumption done


```
Is this true: (A \rightarrow B) = (B \vee \neg A) ?
                     YES!
```

```
apply (rule iffI)
 apply (cases A)
  apply (rule disjI1)
  apply (erule impE)
  apply assumption
  apply assumption
 apply (rule disjI2)
 apply assumption
apply (rule impI)
apply (erule disjE)
 apply assumption
apply (erule notE)
apply assumption
done
```

```
or by blast
```


```
Is this true: (A \rightarrow B) = (B \vee \neg A) ?
                    YES!
              apply (rule iffI)
```

```
apply (cases A)
        apply (rule disjI1)
        apply (erule impE)
        apply assumption
        apply assumption
      apply (rule disjI2)
      apply assumption
     apply (rule impI)
     apply (erule disjE)
      apply assumption
     apply (erule notE)
     apply assumption
     done
OK it's true. But WHY?
```

```
or by blast
```


WHY is this true: $(A \rightarrow B) = (B \lor \neg A)$?

Demo

apply scripts

apply scripts

- \rightarrow unreadable
- \rightarrow hard to maintain

apply scripts

- \rightarrow unreadable
- \rightarrow hard to maintain
- \rightarrow do not scale

apply scripts

- \rightarrow unreadable
- \rightarrow hard to maintain
- \rightarrow do not scale

No structure.

apply scripts **What about..** → unreadable → Elegance? \rightarrow hard to maintain \rightarrow do not scale

No structure.

- → unreadable → Elegance?
-
- \rightarrow do not scale

No structure.

apply scripts **What about..**

-
- → hard to maintain → Explaining deeper insights?

- unreadable → Elegance?
-
-

No structure.

apply scripts **What about..**

-
- → hard to maintain → Explaining deeper insights?
- → do not scale → Large developments?

apply scripts **What about..**

- unreadable → Elegance?
-
-

-
- → hard to maintain → Explaining deeper insights?
- → do not scale → Large developments?

No structure. Isar!

A typical Isar proof

proof assume formula $₀$ </sub> have formula₁ by simp . . . have formula_n by blast show formula_{n+1} by ... qed

A typical Isar proof

proof assume formula $₀$ </sub> have formula₁ by simp . . . have formula_n by blast show formula_{n+1} by ... qed

proves formula₀ \implies formula_{n+1}

A typical Isar proof

proof assume formula $₀$ </sub> have formula₁ by simp . . . have formula_n by blast show formula_{n+1} by ... qed

proves formula₀ \implies formula_{n+1}

(analogous to assumes/shows in lemma statements)

proof = proof [method] statement* qed by method

proof = \mathbf{proof} [method] statement^{*} qed by method

 $method = (simp...)(black...)(rule...)(...)]$


```
proof = \mathbf{proof} [method] statement<sup>*</sup> qed
         by method
```

```
method = (simp... | (blast ...) | (rule ...) | ...statement = fix variables
```

```
\wedge)
assume proposition (\Longrightarrow)[from name<sup>+</sup>] (have | show) proposition proof
next (separates subgoals)
```


```
proof = \mathbf{proof} [method] statement<sup>*</sup> qed
         by method
```

```
method = (simp... | (blast ...) | (rule ...) | ...
```

```
statement = fix variables
                                       \wedge)
           | assume proposition (\Longrightarrow)[from name<sup>+</sup>] (have | show) proposition proof
             next (separates subgoals)
```
proposition $=$ [name:] formula

proof [method] statement^{*} qed

lemma "[A; B] \implies A ∧ B"

proof [method] statement^{*} qed

lemma "[$A; B$] \Longrightarrow $A \wedge B"$ proof (rule conjl)

proof [method] statement^{*} qed

lemma "[A; B] \Longrightarrow A ∧ B" proof (rule conjl) assume A: "A" from A show " A " by assumption

proof [method] statement^{*} qed

```
lemma "[A; B] \Longrightarrow A ∧ B"
proof (rule conjl)
   assume A: "A"
   from A show "A" by assumption
next
```


proof [method] statement^{*} qed

```
lemma "[A; B] \Longrightarrow A ∧ B"
proof (rule conjl)
  assume A: "A"
  from A show "A" by assumption
next
  assume B: "B"
  from B show "B" by assumption
```


proof [method] statement^{*} qed

```
lemma "[A; B] \Longrightarrow A ∧ B"
proof (rule conjl)
  assume A: "A"
  from A show "A" by assumption
next
  assume B: "B"
  from B show "B" by assumption
qed
```


proof [method] statement[∗] qed

```
lemma "[A; B] \implies A ∧ B"
proof (rule conjl)
  assume A: "A"
  from A show "A" by assumption
next
  assume B: "B"
  from B show "B" by assumption
qed
```
 \rightarrow proof (\leq method \geq) applies method to the stated goal

proof [method] statement[∗] qed

```
lemma "[A; B] \implies A ∧ B"
proof (rule conjl)
  assume A: "A"
  from A show "A" by assumption
next
  assume B: "B"
  from B show "B" by assumption
qed
```
 \rightarrow proof (<method>) applies method to the stated goal **→** proof applies a single rule that fits

proof [method] statement[∗] qed

```
lemma "[A; B] \implies A ∧ B"
proof (rule conjl)
  assume A: "A"
  from A show "A" by assumption
next
  assume B: "B"
  from B show "B" by assumption
qed
```
 \rightarrow proof (<method>) applies method to the stated goal \rightarrow proof applies a single rule that fits \rightarrow proof - does nothing to the goal

Look at the proof state!

lemma "[A; B] \Longrightarrow A ∧ B" proof (rule conjl)

Look at the proof state!

lemma "[A; B] \Longrightarrow A ∧ B" proof (rule conjl)

→ proof (rule conjl) changes proof state to 1. $[A; B] \Longrightarrow A$ 2. $[A; B] \implies B$

Look at the proof state!

lemma "[A; B] \Longrightarrow A ∧ B" proof (rule conjl)

→ proof (rule conjl) changes proof state to 1. $[A; B] \Longrightarrow A$ 2. $[A; B] \implies B$

 \rightarrow so we need 2 shows: show "A" and show "B"

Look at the proof state!

lemma "[A; B] \Longrightarrow A ∧ B" proof (rule conjl)

- → proof (rule conjl) changes proof state to 1. $[A; B] \Longrightarrow A$ 2. $[A; B] \implies B$
- \rightarrow so we need 2 shows: show "A" and show "B"
- \rightarrow We are allowed to assume A. because A is in the assumptions of the proof state.

 \rightarrow [prove]:

goal has been stated, proof needs to follow.

\rightarrow [prove]:

goal has been stated, proof needs to follow.

 \rightarrow [state]:

proof block has opened or subgoal has been proved,

new from statement, goal statement or assumptions can follow.

\rightarrow [prove]:

goal has been stated, proof needs to follow.

\rightarrow [state]:

proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.

\rightarrow [chain]:

\rightarrow [prove]:

goal has been stated, proof needs to follow.

\rightarrow [state]:

proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.

 \rightarrow [chain]:

from statement has been made, goal statement needs to follow.

lemma "[A; B] \Longrightarrow A ∧ B"

\rightarrow [prove]:

goal has been stated, proof needs to follow.

\rightarrow [state]:

proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.

 \rightarrow [chain]:

from statement has been made, goal statement needs to follow.

lemma "[A; B] \implies A ∧ B" [prove]

\rightarrow [prove]:

goal has been stated, proof needs to follow.

\rightarrow [state]:

proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.

\rightarrow [chain]:

from statement has been made, goal statement needs to follow.

lemma "[A; B] \Longrightarrow A ∧ B" [prove] proof (rule conjl) [state]

\rightarrow [prove]:

goal has been stated, proof needs to follow.

\rightarrow [state]:

proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.

\rightarrow [chain]:

```
lemma "[A; B] \implies A ∧ B" [prove]
proof (rule conjl) [state]
  assume A: "A" [state]
```


\rightarrow [prove]:

goal has been stated, proof needs to follow.

\rightarrow [state]:

proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.

\rightarrow [chain]:

```
lemma "[A; B]] \Longrightarrow A \wedge B" [prove]
proof (rule conjl) [state]
   assume A: "A" [state]
   from A [chain]
```


\rightarrow [prove]:

goal has been stated, proof needs to follow.

\rightarrow [state]:

proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.

\rightarrow [chain]:

```
lemma "[A; B]] \Longrightarrow A \wedge B" [prove]
proof (rule conjl) [state]
   assume A: "A" [state]
   from A [chain] show "A" [prove] by assumption [state]
next [state] ...
```
Have

Can be used to make intermediate steps.

Example:

Have

Can be used to make intermediate steps.

Example:

lemma $''(x:: nat) + 1 = 1 + x"$

Have

Can be used to make intermediate steps.

Example:

```
lemma "(x:: nat) + 1 = 1 + x"
proof -
  have A: "x + 1 = Suc x" by simp
  have B: "1 + x = Suc x" by simp
  show "x + 1 = 1 + x" by (simp only: A B)
qed
```


Demo

Backward reasoning: ... have " $A \wedge B$ " proof

DATA

Backward reasoning: ... have " $A \wedge B$ " proof

 \rightarrow proof picks an intro rule automatically

DATA

Backward reasoning: ... have " $A \wedge B$ " proof

- \rightarrow proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Backward reasoning: ... have " $A \wedge B$ " proof

- \rightarrow proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: . . .

assume $AR: "A \wedge R"$ from AB have ". . ." proof

Backward reasoning: ... have " $A \wedge B$ " proof

- \rightarrow proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: . . . assume $AR: "A \wedge R"$ from AB have ". . ." proof

 \rightarrow now proof picks an elim rule automatically

Backward reasoning: ... have " $A \wedge B$ " proof

- \rightarrow proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: . . . assume $AR: "A \wedge R"$ from AB have ". . ." proof

- \rightarrow now proof picks an elim rule automatically
- \rightarrow triggered by from

Backward reasoning: ... have " $A \wedge B$ " proof

- \rightarrow proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: . . .

assume $AR: "A \wedge R"$ from AB have ". . ." proof

- \rightarrow now proof picks an elim rule automatically
- \rightarrow triggered by from
- \rightarrow first assumption of rule must unify with AB

Backward reasoning: ... have " $A \wedge B$ " proof

- \rightarrow proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: . . .

assume $AR: "A \wedge R"$ from AB have ". . ." proof

- \rightarrow now proof picks an elim rule automatically
- \rightarrow triggered by from
- \rightarrow first assumption of rule must unify with AB

General case: from $A_1 \ldots A_n$ have R proof

- \rightarrow first *n* assumptions of rule must unify with $A_1 \ldots A_n$
- \rightarrow conclusion of rule must unify with R

fix $v_1 \ldots v_n$

fix $v_1 \ldots v_n$

Introduces new arbitrary but fixed variables $(\sim$ parameters, $\bigwedge)$

fix $v_1 \ldots v_n$

Introduces new arbitrary but fixed variables $(\sim$ parameters, $\bigwedge)$

obtain $v_1 \ldots v_n$ where $\langle \text{prop} \rangle \langle \text{proof} \rangle$

fix $V_1 \ldots V_n$

Introduces new arbitrary but fixed variables $(\sim$ parameters, $\bigwedge)$

obtain $v_1 \ldots v_n$ where $\langle \text{prop} \rangle \langle \text{proof} \rangle$

Introduces new variables together with property

Demo

this $=$ the previous fact proved or assumed

- this $=$ the previous fact proved or assumed
- then $=$ from this

- this $=$ the previous fact proved or assumed
- then $=$ from this
- thus $=$ then show

- this $=$ the previous fact proved or assumed
- then $=$ from this
- thus $=$ then show
- hence $=$ then have

this $=$ the previous fact proved or assumed

?thesis $=$ the last enclosing goal statement

Moreover and Ultimately

have $X_1: P_1 \ldots$ have $X_2: P_2 \ldots$. . . have $X_n: P_n \ldots$ from $X_1 \ldots X_n$ show ...

Moreover and Ultimately

have $X_1: P_1 \ldots$ have $X_2: P_2 \ldots$. . . have $X_n: P_n \ldots$ from $X_1 \ldots X_n$ show ...

wastes lots of brain power on names $X_1 \ldots X_n$

Moreover and Ultimately

have $X_1: P_1 \ldots$ have $P_1 \ldots$ have $X_2: P_2 \ldots$ moreover have .

.

. have $X_n: P_n \dots$ moreover have $P_n \dots$ from $X_1 \ldots X_n$ show \ldots ultimately show \ldots

moreover have P_2 ...

. .

.

wastes lots of brain power on names $X_1 \ldots X_n$

General Case Distinctions

show formula proof -

show formula proof have $P_1 \vee P_2 \vee P_3$ <proof>

show formula proof have $P_1 \vee P_2 \vee P_3$ <proof> **moreover** { assume P_1 ... have ?thesis <proof> }

show formula proof have $P_1 \vee P_2 \vee P_3$ <proof> **moreover** { assume P_1 ... have ?thesis <proof> } **moreover** { assume P_2 ... have ?thesis <proof> }


```
show formula
proof -
  have P_1 \vee P_2 \vee P_3 <proof>
  moreover { assume P_1 ... have ?thesis \langle proof\rangle }
  moreover { assume P_2 ... have ?thesis \langle \text{proof} \rangle }
  moreover { assume P_3 ... have ?thesis <proof> }
  ultimately show ?thesis by blast
qed
```


```
show formula
proof -
  have P_1 \vee P_2 \vee P_3 <proof>
  moreover { assume P_1 ... have ?thesis \langle \text{proof} \rangle }
  moreover { assume P_2 ... have ?thesis \langle \text{proof} \rangle }
  moreover { assume P_3 ... have ?thesis <proof> }
  ultimately show ?thesis by blast
qed
      \{ \ldots \} is a proof block similar to proof \ldots ged
```

```
20 | COMP4161 | C Data61, CSIRO: provided under Creative Commons Attribution License
```


```
show formula
proof -
  have P_1 \vee P_2 \vee P_3 <proof>
  moreover { assume P_1 ... have ?thesis \langle proof\rangle }
  moreover { assume P_2 ... have ?thesis \langle \text{proof} \rangle }
  moreover { assume P_3 ... have ?thesis \langle \text{proof} \rangle }
  ultimately show ?thesis by blast
qed
       \{ \ldots \} is a proof block similar to proof \ldots ged
            { assume P_1 \ldots have P \leq \text{proof} > }
```

```
stands for P_1 \Longrightarrow P
```
Mixing proof styles


```
from ...
have ...
  apply - make incoming facts assumptions
  apply (\ldots).
.
.
  apply (\ldots)done
```


Datatypes in Isar

Datatype case distinction


```
proof (cases term)
   case Constructor_1.
.
.
next
.
.
.
next
    case (Constructor<sub>k</sub> \vec{x})
    \cdots \vec{X} \cdotsqed
```
Datatype case distinction


```
proof (cases term)
   case Constructor_1.
    .
    .
next
.
.
.
next
   case (Constructor<sub>k</sub> \vec{x})
   \cdot \cdot \cdot \vec{x} \cdot \cdot \cdotqed
```
case (Constructor_i \vec{x}) \equiv **fix** \vec{x} assume Constructor_i: " term = Constructor_i \vec{x} "

Structural induction for nat

Structural induction: \implies and \wedge


```
show "\bigwedge x. A n \Longrightarrow P n"
proof (induct n)<br>case 0
  show ?case
next
  case (Suc n) \equiv fix n and x
  show ?case
qed
```
 \equiv fix x assume 0: "A 0" let $?case = "P 0"$

```
... \therefore assume Suc: "\bigwedge x. A n \Longrightarrow P n"
\cdots n \cdots \cdots... let ?case = "P (Suc n)"
```


Demo: Datatypes in Isar

Calculational Reasoning

$$
\begin{array}{l} \text{Prove:} \\ x \cdot x^{-1} = 1 \end{array}
$$

using: assoc: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ left_inv: $x^{-1} \cdot x = 1$ left_one: $1 \cdot x = x$

Prove:
\n
$$
x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})
$$
\n
$$
\dots = 1 \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1}
$$
\n
$$
\dots = 1
$$

$$
\begin{array}{ll}\n\text{assoc:} & \left(x \cdot y\right) \cdot z = x \cdot \left(y \cdot z\right) \\
\text{left_inv:} & x^{-1} \cdot x = 1 \\
\text{left_one:} & 1 \cdot x = x\n\end{array}
$$

Prove:
\n
$$
x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})
$$
\n
$$
\dots = 1 \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1}
$$
\n
$$
\dots = 1
$$

$$
\begin{array}{ll}\n\text{assoc:} & \left(x \cdot y\right) \cdot z = x \cdot \left(y \cdot z\right) \\
\text{left_inv:} & x^{-1} \cdot x = 1 \\
\text{left_one:} & 1 \cdot x = x\n\end{array}
$$

Can we do this in Isabelle?

Prove:
\n
$$
x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})
$$
\n
$$
\dots = 1 \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1}
$$
\n
$$
\dots = 1
$$

$$
\begin{array}{ll}\n\text{assoc:} & \left(x \cdot y\right) \cdot z = x \cdot \left(y \cdot z\right) \\
\text{left_inv:} & x^{-1} \cdot x = 1 \\
\text{left_one:} & 1 \cdot x = x\n\end{array}
$$

Can we do this in Isabelle?

→ Simplifier: too eager

Prove:
\n
$$
x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})
$$
\n
$$
\dots = 1 \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1}
$$
\n
$$
\dots = 1
$$

$$
\begin{array}{ll}\n\text{assoc:} & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\
\text{left_inv:} & x^{-1} \cdot x = 1 \\
\text{left_one:} & 1 \cdot x = x\n\end{array}
$$

Can we do this in Isabelle?

- → Simplifier: too eager
- **→** Manual: difficult in apply style

Prove:
\n
$$
x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})
$$
\n
$$
\dots = 1 \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})
$$
\n
$$
\dots = (x^{-1})^{-1} \cdot x^{-1}
$$
\n
$$
\dots = 1
$$

$$
\begin{array}{|c|c|}\n\hline\n\text{DATA} & \text{CMB} \\
\hline\n\text{B1} & \text{CMB} \\
\hline\n\end{array}
$$

$$
\begin{array}{ll}\n\text{assoc:} & \left(x \cdot y\right) \cdot z = x \cdot \left(y \cdot z\right) \\
\text{left_inv:} & x^{-1} \cdot x = 1 \\
\text{left_one:} & 1 \cdot x = x\n\end{array}
$$

Can we do this in Isabelle?

- **→** Simplifier: too eager
- \rightarrow Manual: difficult in apply style
- → Isar: with the methods we know, too verbose

The Problem

a $= b$ $\cdots = c$ $\cdots = d$ shows $a = d$ by transitivity of $=$

The Problem

$$
a = b
$$

\n... = c
\n... = d
\nshows $a = d$ by transitivity of =

Each step usually nontrivial (requires own subproof)

The Problem

$$
a = b
$$

\n... = c
\n... = d
\nshows $a = d$ by transitivity of =

Each step usually nontrivial (requires own subproof) Solution in Isar:

 \rightarrow Keywords also and finally to delimit steps

The Problem

$$
a = b
$$

\n... = c
\n... = d
\nshows $a = d$ by transitivity of =

Each step usually nontrivial (requires own subproof) Solution in Isar:

- \rightarrow Keywords also and finally to delimit steps
- \rightarrow ...: predefined schematic term variable, refers to right hand side of last expression

The Problem

$$
a = b
$$

\n... = c
\n... = d
\nshows $a = d$ by transitivity of =

Each step usually nontrivial (requires own subproof) Solution in Isar:

- \rightarrow Keywords also and finally to delimit steps
- \rightarrow ...: predefined schematic term variable, refers to right hand side of last expression
- \rightarrow Automatic use of transitivity rules to connect steps

have " $t_0 = t_1$ " [proof] also

have " $t_0 = t_1$ " [proof] calculation register also $t_0 = t_1$ "

have " $t_0 = t_1$ " [proof] calculation register also $t_0 = t_1$ " have " $\dots = t_2$ " [proof]

have " $t_0 = t_1$ " [proof] calculation register also $t_0 = t_1$ " have " $\dots = t_2$ " [proof] also $t_0 = t_2$ "

have "
$$
t_0 = t_1
$$
" [proof]
also
have "... = t_2 " [proof]
also

$$
\frac{1}{2} \, \Big|
$$

have " $t_0 = t_1$ " [proof]	calculation register
also " $t_0 = t_1$ "	$t_0 = t_1$ "
also " $t_0 = t_2$ "	
\vdots	\vdots

have " $\cdots = t_n$ " [proof]

So/finally

\nhave "
$$
t_0 = t_1
$$
" [proof]

\nalso

\nalso

\nif $t_0 = t_1$ " [proof]

\nalso

\nif $t_0 = t_1$ "

\nif $t_0 = t_2$ "

\nif $t_0 = t_2$ "

\nif $t_0 = t_{n-1}$ "

\nif $t_0 = t_{n-1}$ "

have " $t_0 = t_1$ " [proof]	calculation register
also " $t_0 = t_1$ "	$t_0 = t_1$ "
also " $t_0 = t_2$ "	
\vdots	\vdots

have " $\cdots = t_n$ " [proof]
finally **finally** $t_0 = t_n$

So/finally

\nhave "
$$
t_0 = t_1
$$
" [proof]

\nalso

\nhave "... = t_2 " [proof]

\nalso

\nis

have " $t_0 = t_1$ " [proof] calculation register also $t_0 = t_1$ " have " $\dots = t_2$ " [proof] also $t_0 = t_2$ " also $t_{0} = t_{n-1}$ " have " $\cdots = t_n$ " [proof] **finally** $t_0 = t_n$ show P — 'finally' pipes fact " $t_0 = t_n$ " into the proof

More about also

 \rightarrow Works for all combinations of $=$, \leq and \lt .

More about also

- \rightarrow Works for all combinations of $=$, \leq and \lt .
- → Uses all rules declared as [trans].
More about also

- \rightarrow Works for all combinations of $=$, \leq and \lt .
- → Uses all rules declared as [trans].
- → To view all combinations: print_trans_rules

have $=$ " $l_1 \odot r_1$ " [proof] also have " $\ldots \odot r_2$ " [proof] also

have $=$ " $l_1 \odot r_1$ " [proof] also have " $\ldots \odot r_2$ " [proof] also

Anatomy of a [trans] rule:

→ Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$

have $=$ " $l_1 \odot r_1$ " [proof] also have " $\ldots \odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- → Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- \rightarrow More general form: $[P \, I_1 \, r_1; Q \, r_1 \, r_2; A] \rightarrow C \, I_1 \, r_2$

have $=$ " $l_1 \odot r_1$ " [proof] also have " $\ldots \odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- → Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- \rightarrow More general form: $[P \, I_1 \, r_1; Q \, r_1 \, r_2; A] \rightarrow C \, I_1 \, r_2$

Examples:

 \rightarrow pure transitivity: $[a = b; b = c] \rightarrow a = c$

have $=$ " $l_1 \odot r_1$ " [proof] also have " $\ldots \odot r$ " [proof] also

Anatomy of a [trans] rule:

- → Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- \rightarrow More general form: $[P \, I_1 \, r_1; Q \, r_1 \, r_2; A] \rightarrow C \, I_1 \, r_2$

- \rightarrow pure transitivity: $[a = b; b = c] \rightarrow a = c$
- \rightarrow mixed: $[a \leq b; b < c] \Rightarrow a < c$

have $=$ " $l_1 \odot r_1$ " [proof] also have " $\ldots \odot r$ " [proof] also

Anatomy of a [trans] rule:

- → Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- \rightarrow More general form: $[P \, I_1 \, r_1; Q \, r_1 \, r_2; A] \rightarrow C \, I_1 \, r_2$

- \rightarrow pure transitivity: $[a = b; b = c] \rightarrow a = c$
- \rightarrow mixed: $[a \leq b; b < c] \Rightarrow a < c$
- \rightarrow substitution: $[P \; a; a = b] \rightarrow P \; b$

have $=$ " $l_1 \odot r_1$ " [proof] also have " $\ldots \odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- → Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- \rightarrow More general form: $[P \, I_1 \, r_1; Q \, r_1 \, r_2; A] \rightarrow C \, I_1 \, r_2$

- \rightarrow pure transitivity: $[a = b; b = c] \Longrightarrow a = c$
- \rightarrow mixed: $[a \leq b; b < c] \Rightarrow a < c$
- \rightarrow substitution: $[P \; a; a = b] \rightarrow P \; b$
- → antisymmetry: $[a < b; b < a] \implies False$

have $=$ " $l_1 \odot r_1$ " [proof] also have " $\ldots \odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- → Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- \rightarrow More general form: $[P \, I_1 \, r_1; Q \, r_1 \, r_2; A] \Longrightarrow C \, I_1 \, r_2$

- \rightarrow pure transitivity: $[a = b; b = c] \Longrightarrow a = c$
- \rightarrow mixed: $[a \leq b; b < c] \Rightarrow a < c$
- \rightarrow substitution: $[P \; a; a = b] \rightarrow P \; b$
- → antisymmetry: $[a < b; b < a] \implies False$
- → monotonicity: $[a = f \ b; b < c; \land x \ y; x < y \Longrightarrow f \ x < f \ y \Longrightarrow a < f \ c$

Demo