COMP4161: Advanced Topics in Software Verification

$|P|$

DATA

 $\overline{61}$

Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka S2/2018

data61.csiro.au

Content

 \blacksquare

^aa1 due; ^ba2 due; ^ca3 due

If the following true?

 $\{x = 0\}$ $y := x;$ $x := x + 1;$ ${x = 1 \land y = 0}$

If the following true?

 $\{x = 0\}$ $y := x;$ $x := x + 1;$ ${x = 1 \land y = 0}$

YES!

Is it still true?

{
$$
x = 0
$$
}
\n $y := x$;
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ }

Is it still true?

{
$$
x = 0
$$
}
\n $y := x$;
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ }

NO!

So far we have assumed sequential execution

{
$$
x = 0
$$
}
\n $y := x$;
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ }

i.e. a single thread of execution accessing the memory state

So far we have assumed sequential execution

i.e. a single thread of execution accessing the memory state

So far we have assumed sequential execution

i.e. a single thread of execution accessing the memory state

This is not always the case!

5 | COMP4161 | c Data61, CSIRO: provided under Creative Commons Attribution License

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing

DATA

DATA

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing Interleaved execution Parallel execution

DATA

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing Interleaved execution Parallel execution

Here: we'll look at shared-memory concurrency

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing Interleaved execution Parallel execution

Here: we'll look at shared-memory concurrency

(and we'll ignore further complications such as caches, weak memory...)

We want to be able to reason about parallel composition of programs:

 \int_{0}^{DATA}

We want to be able to reason about parallel composition of programs:

We want to be able to reason about parallel composition of programs:

2 kinds of properties:

"something bad does not happen" "something good must happen"

Safety: Liveness:

(no bad state can be reached) (specific states must be reached)

We want to be able to reason about parallel composition of programs:

2 kinds of properties:

Safety: Liveness: "something bad does not happen" "something good must happen" (no bad state can be reached) (specific states must be reached)

e.g. $\{x = 0\}$ e.g. the program terminates

We want to be able to reason about parallel composition of programs:

2 kinds of properties:

Safety: Liveness: "something bad does not happen" "something good must happen"

With concurrency: much harder! (set of reachable states much bigger)

(no bad state can be reached) (specific states must be reached) e.g. $\{x = 0\}$ e.g. the program terminates

We want to be able to reason about parallel composition of programs:

2 kinds of properties:

Safety: Liveness: "something bad does not happen" "something good must happen"

(set of reachable states much bigger) (dead-locks, live-locks...)

(no bad state can be reached) (specific states must be reached) e.g. $\{x = 0\}$ e.g. the program terminates

With concurrency: much harder! With concurrency: new problems!

We want to be able to reason about parallel composition of programs:

{precondition}

Here:

→ We focus on safety properties: postcondition holds if reached

We want to be able to reason about parallel composition of programs:

{precondition}

Here:

- → We focus on safety properties: postcondition holds if reached
- → We will define parallel composition (||) as non-deterministic interleaving

We want to be able to reason about parallel composition of programs:

{precondition}

Here:

- → We focus on safety properties: postcondition holds if reached
- \rightarrow We will define parallel composition (||) as non-deterministic interleaving
- → We go back to our minimal IMP language (forget about C and monads)

datatype com

Assign vname aexp (2011 = 2)
| Semi com com (1, 1)
| Cond bexp com com (IF 2 THEN 2 ELSE 2)
| While bexp com (WHILE 2 DO 2 OD)

If the following true?

 $\{x = 0\}$ $y := x;$ $x := x + 1;$ ${x = 1 \land y = 0}$

YFS!

Is it still true?

{
$$
x = 0
$$
}
\n $y := x$;
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ }

NO!

Is it still true?

{
$$
x = 0
$$
}
\n $y := x$;
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ }

NO!

What is going wrong? What do we need to change?

- \rightarrow to make sure we don't prove wrong statements!
- \rightarrow to allow us to prove true statements about concurrent programs

How would we have proved this?

{
$$
x = 0
$$
}
\n $y := x$;
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ }

How would we have proved this? Using Hoare logic rules!

{
$$
x = 0
$$
}
\n $y := x$;
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ }

How would we have proved this? Using Hoare logic rules!

{
$$
x = 0
$$
}
\n $y := x$;
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ }

$$
\frac{\vdash \{P\} \ c_1 \{R\} \vdash \{R\} \ c_2 \{Q\}}{\vdash \{P\} \ c_1; c_2 \{Q\}}
$$

DATA

$$
\vdash \{P[x \mapsto e]\} \quad x := e \quad \{P\}
$$

How would we have proved this? Using Hoare logic rules!

{
$$
x = 0
$$
}
\n $y := x$; { $x + 1 = 1 \land y = 0$ }
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ }

$$
\frac{\vdash \{P\} \ c_1 \{R\} \vdash \{R\} \ c_2 \{Q\}}{\vdash \{P\} \ c_1; c_2 \{Q\}}
$$

DATA

$$
\vdash \{P[x \mapsto e]\} \quad x := e \quad \{P\}
$$

How would we have proved this? Using Hoare logic rules!

 $\{x = 0\} \implies \{x + 1 = 1 \land x = 0\}$ $y := x$; { $x + 1 = 1 \land y = 0$ } $x := x + 1$: ${x = 1 \land y = 0}$

$$
\frac{\vdash \{P\} \ c_1 \{R\} \vdash \{R\} \ c_2 \{Q\}}{\vdash \{P\} \ c_1; c_2 \{Q\}}
$$

$$
\vdash \{P[x \mapsto e]\} \quad x := e \quad \{P\}
$$

How would we have proved this? Using Hoare logic rules!

 $\{x=0\} \implies \{x+1=1 \wedge x=0\}$ $y := x$; { $x + 1 = 1 \wedge y = 0$ } $x := x + 1$: $\{x = 1 \land y = 0\}$

$$
\frac{\vdash \{P\} \ c_1 \{R\} \vdash \{R\} \ c_2 \{Q\}}{\vdash \{P\} \ c_1; c_2 \{Q\}}
$$

$$
\vdash \{P[x \mapsto e]\} \quad x := e \quad \{P\}
$$

Why does this make it true? What does it mean that it's true? It means:

If the program " $y := x$; $x := x + 1$ " is executed from a state satisfying $\{x = 0\}$ then, if it terminates, the resulting state satisfied $\{x = 1 \land y = 0\}$

How would we have proved this? Using Hoare logic rules!

 $\{x=0\} \implies \{x+1=1 \wedge x=0\}$ $y := x$; { $x + 1 = 1 \wedge y = 0$ } $x := x + 1$: $\{x = 1 \land y = 0\}$

$$
\frac{\vdash \{P\} \ c_1 \{R\} \vdash \{R\} \ c_2 \{Q\}}{\vdash \{P\} \ c_1; c_2 \{Q\}}
$$

$$
\vdash \{P[x \mapsto e]\} \quad x := e \quad \{P\}
$$

Why does this make it true? What does it mean that it's true? It means:

$$
\langle y := x; \ x := x + 1, \sigma \rangle \to \sigma' \quad \land \quad x \ \sigma = 0 \quad \longrightarrow \quad x \ \sigma' = 1 \ \land \ y \ \sigma' = 0
$$

How would we have proved this? Using Hoare logic rules!

 $\{x=0\} \implies \{x+1=1 \wedge x=0\}$ $y := x$; { $x + 1 = 1 \wedge y = 0$ } $x := x + 1$: $\{x = 1 \land y = 0\}$

$$
\frac{\vdash \{P\} \ c_1 \{R\} \vdash \{R\} \ c_2 \{Q\}}{\vdash \{P\} \ c_1; c_2 \{Q\}}
$$

$$
\vdash \{P[x \mapsto e]\} \quad x := e \quad \{P\}
$$

Why does this make it true? What does it mean that it's true? It means:

 $\langle y := x; x := x + 1, \sigma \rangle \rightarrow \sigma' \land x \sigma = 0 \rightarrow x \sigma' = 1 \land y \sigma' = 0$

Where:

$$
\frac{\langle c_1, \sigma \rangle \to \sigma' \quad \langle c_2, \sigma' \rangle \to \sigma''}{\langle c_1, c_2, \sigma \rangle \to \sigma''} \quad \frac{e \sigma = v}{\langle x := e, \sigma \rangle \to \sigma[x \mapsto v]}
$$

How would we have proved this? Using Hoare logic rules!

 $\{x=0\} \implies \{x+1=1 \wedge x=0\}$ $y := x$; { $x + 1 = 1 \wedge y = 0$ } $x := x + 1$: $\{x = 1 \land y = 0\}$

$$
\frac{\vdash \{P\} \ c_1 \{R\} \vdash \{R\} \ c_2 \{Q\}}{\vdash \{P\} \ c_1; c_2 \{Q\}}
$$

$$
\vdash \{P[x \mapsto e]\} \quad x := e \quad \{P\}
$$

Why does this make it true? What does it mean that it's true? It means:

 $\langle y := x; x := x + 1, \sigma \rangle \rightarrow \sigma' \land x \sigma = 0 \rightarrow x \sigma' = 1 \land y \sigma' = 0$

Where:

$$
\frac{\langle c_1, \sigma \rangle \to \sigma' \quad \langle c_2, \sigma' \rangle \to \sigma''}{\langle c_1, c_2, \sigma \rangle \to \sigma''} \quad \frac{e \sigma = v}{\langle x := e, \sigma \rangle \to \sigma[x \mapsto v]}
$$

Soundness: $\vdash \{P\} \subset \{Q\} \Longrightarrow \forall \sigma \; \sigma'. \; \langle c, \sigma \rangle \rightarrow \sigma' \land P \; \sigma \longrightarrow Q \; \sigma'$

How would we have proved this? Using Hoare logic rules!

 $\{x=0\} \implies \{x+1=1 \wedge x=0\}$ $y := x$; { $x + 1 = 1 \wedge y = 0$ } $x := x + 1$: $\{x = 1 \land y = 0\}$

$$
\frac{\vdash \{P\} \ c_1 \{R\} \vdash \{R\} \ c_2 \{Q\}}{\vdash \{P\} \ c_1; c_2 \{Q\}}
$$

$$
\vdash \{P[x \mapsto e]\} \quad x := e \quad \{P\}
$$

Why does this make it true? What does it mean that it's true? It means:

 $\langle y := x; x := x + 1, \sigma \rangle \rightarrow \sigma' \land x \sigma = 0 \rightarrow x \sigma' = 1 \land y \sigma' = 0$

Where:

$$
\frac{\langle c_1, \sigma \rangle \to \sigma' \quad \langle c_2, \sigma' \rangle \to \sigma''}{\langle c_1, c_2, \sigma \rangle \to \sigma''} \quad \frac{\mathsf{e} \; \sigma = \mathsf{v}}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \to \sigma[\mathsf{x} \mapsto \mathsf{v}]}
$$

Soundness: $\vdash \{P\} \subset \{Q\} \Longrightarrow \forall \sigma \; \sigma'. \; \langle c, \sigma \rangle \rightarrow \sigma' \land P \; \sigma \longrightarrow Q \; \sigma'$

What changes when we have another program running in parallel?

{
$$
x = 0
$$
}
\n $y := x$; { $x + 1$ }
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ } $\qquad \qquad || \quad x := 4$

→ Execution is interleaved; Intermediate assertions can be interferred with

{
$$
x = 0
$$
}
\n $y := x$; { $x + 1$ }
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ } $\qquad \qquad || \quad x := 4$

- → Execution is interleaved; Intermediate assertions can be interferred with
- **→** Need a new reasoning framework!

{
$$
x = 0
$$
}
\n $y := x$; { $x + 1$ }
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ } $\qquad \qquad || \quad x := 4$

- \rightarrow Execution is interleaved: Intermediate assertions can be interferred with
- **→** Need a new reasoning framework!
- \rightarrow New syntax, new semantics, new proof rules (proved sound w.r.t semantics), new VCG

{
$$
x = 0
$$
}
\n $y := x$; { $x + 1$ }
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ } $\qquad \qquad || \quad x := 4$

- \rightarrow Execution is interleaved: Intermediate assertions can be interferred with
- **→** Need a new reasoning framework!
- \rightarrow New syntax, new semantics, new proof rules (proved sound w.r.t semantics), new VCG
- \rightarrow (1969: Hoare Logic (Tony Hoare))
- **→** 1976: Owicki-Gries (Susan Owicki and David Gries)
- **→ 1981: Rely-Guarantee (Cliff Jones)**
- ➜ ...

{
$$
x = 0
$$
}
\n $y := x$; { $x + 1$ }
\n $x := x + 1$;
\n{ $x = 1 \land y = 0$ } $\qquad \qquad || \quad x := 4$

- \rightarrow Execution is interleaved: Intermediate assertions can be interferred with
- **→** Need a new reasoning framework!
- \rightarrow New syntax, new semantics, new proof rules (proved sound w.r.t semantics), new VCG
- \rightarrow (1969: Hoare Logic (Tony Hoare))
- **→** 1976: Owicki-Gries (Susan Owicki and David Gries)
- **→ 1981: Rely-Guarantee (Cliff Jones)**
- ➜ ...

OG+RG formalised in Isabelle/HOL by Leonor Prensa Nieto, 2002

- Syntax: our IMP language $+$ Parallel operator $+$ Await operator
- Semantics:
	- \blacktriangleright P \parallel Q: pick one program and execute its current instruction
	- \triangleright AWAIT b DO c OD: if guard is true execute c atomically

- Syntax: our IMP language $+$ Parallel operator $+$ Await operator
- Semantics:
	- \blacktriangleright P \parallel Q: pick one program and execute its current instruction
	- \triangleright AWAIT b DO c OD: if guard is true execute c atomically
- Proof rules:
	- I you prove *local correctness* (as before)
	- I your prove interference-freedom (assertions not interfered with)

Intuition:

- Syntax: our IMP language $+$ Parallel operator $+$ Await operator
- Semantics:
	- \blacktriangleright P \parallel Q: pick one program and execute its current instruction
	- \triangleright AWAIT b DO c OD: if guard is true execute c atomically
- Proof rules:
	- \triangleright you prove *local correctness* (as before)
	- I your prove *interference-freedom* (assertions not interfered with)

 $\{is_even x\}$ $x := x + 1$: $x := x + 1$: $\{is_even x\}$

$$
\parallel x := x + 2
$$

Intuition:

- Syntax: our IMP language $+$ Parallel operator $+$ Await operator
- Semantics:
	- \blacktriangleright P \parallel Q: pick one program and execute its current instruction
	- \triangleright AWAIT b DO c OD: if guard is true execute c atomically
- Proof rules:
	- \triangleright you prove *local correctness* (as before)
	- I your prove *interference-freedom* (assertions not interfered with)

 $\{is_even x\}$ $x := x+1; \ \{ \textit{is_even} \ x+1 \} \quad \| \ \textit{x} := x+2 \}$ $x := x + 1;$ $\{is_even x\}$

Intuition:

- Syntax: our IMP language $+$ Parallel operator $+$ Await operator
- Semantics:
	- \blacktriangleright P \parallel Q: pick one program and execute its current instruction
	- \triangleright AWAIT b DO c OD: if guard is true execute c atomically
- Proof rules:
	- I you prove local correctness (as before)
	- I your prove interference-freedom (assertions not interfered with)

 $\{is_even x\}$ $x := x+1; \ \{ \textit{is_even} \ x+1 \} \quad \| \ \textit{x} := x+2 \}$ $x := x + 1;$ $\{is_even x\}$

- \rightarrow Needs a fully annotated program!
- \rightarrow Needs a "small-step semantics" $\langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle$ (before big-step: $\langle c, \sigma \rangle \rightarrow \sigma'$)

Formally:

- Syntax: our IMP language $+$ Parallel operator $+$ Await operator
- Semantics:

$$
\frac{\langle c_1, \sigma\rangle \to \langle c_1', \sigma'\rangle}{\langle c_1||c_2, \sigma\rangle \to \langle c_1'||c_2, \sigma'\rangle} \quad \frac{\langle c_2, \sigma\rangle \to \langle c_2', \sigma'\rangle}{\langle c_1||c_2, \sigma\rangle \to \langle c_1||c_2', \sigma'\rangle}
$$

Formally:

- Syntax: our IMP language $+$ Parallel operator $+$ Await operator
- Semantics:

$$
\frac{\langle c_1,\sigma\rangle\to\langle c_1',\sigma'\rangle}{\langle c_1||c_2,\sigma\rangle\to\langle c_1'||c_2,\sigma'\rangle}\quad\frac{\langle c_2,\sigma\rangle\to\langle c_2',\sigma'\rangle}{\langle c_1||c_2,\sigma\rangle\to\langle c_1||c_2',\sigma'\rangle}
$$

• Hoare rules:

 ${P_1}$ c₁ {Q₁} {P₂} c₂ {Q₂} interfree c₁ c₂ interfree c₂ c₁ ${P_1 \wedge P_2}{c_1||c_2 \over Q_1 \wedge Q_2}$

Formally:

- Syntax: our IMP language $+$ Parallel operator $+$ Await operator
- Semantics:

$$
\frac{\langle c_1, \sigma \rangle \to \langle c_1', \sigma' \rangle}{\langle c_1 || c_2, \sigma \rangle \to \langle c_1' || c_2, \sigma' \rangle} \quad \frac{\langle c_2, \sigma \rangle \to \langle c_2', \sigma' \rangle}{\langle c_1 || c_2, \sigma \rangle \to \langle c_1 || c_2', \sigma' \rangle}
$$

• Hoare rules:

 ${P_1}$ c₁ {Q₁} {P₂} c₂ {Q₂} interfree c₁ c₂ interfree c₂ c₁ ${P_1 \wedge P_2}{c_1||c_2 \over Q_1 \wedge Q_2}$

Where
interfree
$$
c_1
$$
 $c_2 \equiv$
 $\forall p \in (assertions c_1). \forall (a, c) \in (atomics c_2). \{p \land a\}c\{p\}$

- → Quadratic explosion of proof obligations! (verification conditions)
- \rightarrow Not compositional
- \rightarrow Not complete: sometimes need auxilliary/ghost variables

- → Quadratic explosion of proof obligations! (verification conditions)
- \rightarrow Not compositional
- \rightarrow Not complete: sometimes need auxilliary/ghost variables

$$
\begin{aligned} \{x = 0\} \\ x := x + 1; &\| x := x + 1 \\ \{x = 2\} \end{aligned}
$$

- → Quadratic explosion of proof obligations! (verification conditions)
- \rightarrow Not compositional
- \rightarrow Not complete: sometimes need auxilliary/ghost variables

$$
\{x = 0\}
$$

$$
x := x + 1; \|x := x + 1
$$

$$
\{x = 2\}
$$

$$
\{x=0 \wedge a_1=0 \wedge a_2=0\}
$$

$$
\langle x := x + 1; a_1 := 1 \rangle \parallel \langle x := x + 1; a_2 := 1 \rangle
$$

$$
\{x=2\}
$$

- → Quadratic explosion of proof obligations! (verification conditions)
- \rightarrow Not compositional
- \rightarrow Not complete: sometimes need auxilliary/ghost variables

$$
x := x + 1; \parallel x := x + 1 \n\{x = 2\}
$$

$$
\{x=0 \wedge a_1=0 \wedge a_2=0\}
$$

$$
\begin{aligned}\n\{a_2 = 0 \land x = 0 \lor a_2 = 1 \land x = 1\} & \quad \{a_1 = 0 \land x = 0 \lor a_1 = 1 \land x = 1\} \\
&< x := x + 1; a_1 := 1 > \\
\{a_2 = 0 \land x = 1 \lor a_2 = 1 \land x = 2\} & \quad \{a_1 = 0 \land x = 1 \lor a_1 = 1 \land x = 2\} \\
&< x > x := x + 1; a_2 := 1 > \\
&< x > x := x + 1; a_2 := 1 > \\
&< x > x > x > x > 1 \\
&< x > x > x > x > 1\n\end{aligned}
$$

- → Quadratic explosion of proof obligations! (verification conditions)
- \rightarrow Not compositional
- \rightarrow Not complete: sometimes need auxilliary/ghost variables

$$
\{x = 0\}
$$

$$
x := x + 1; \|x := x + 1
$$

$$
\{x = 2\}
$$

$$
\{x = 0 \land a_1 = 0 \land a_2 = 0\}
$$

\n
$$
\{a_2 = 0 \land x = 0 \lor a_2 = 1 \land x = 1\}
$$

\n
$$
< x := x + 1; a_1 := 1 > \quad \begin{cases} a_1 = 0 \land x = 0 \lor a_1 = 1 \land x = 1\\ \lor x = 1 \lor x = 1 \lor a_2 = 1 \land x = 2 \end{cases}
$$

\n
$$
\{a_2 = 0 \land x = 1 \lor a_2 = 1 \land x = 2\}
$$

\n
$$
\{a_1 = 0 \land x = 1 \lor a_1 = 1 \land x = 2\}
$$

\n
$$
\{a_1 = 0 \land x = 1 \lor a_1 = 1 \land x = 2\}
$$

\n
$$
\{a_2 = 1 \land a_2 = 1 \land x = 2\}
$$

\n
$$
\{x = 2\}
$$

Demo

- Syntax, semantics: as before (but no need for assertions)
- Proof rules:
	- \blacktriangleright each program is specified in isolation, assuming a behavior of the "environment" (other programs in parallel)

- Syntax, semantics: as before (but no need for assertions)
- Proof rules:
	- \blacktriangleright each program is specified in isolation, assuming a behavior of the "environment" (other programs in parallel)
	- **D** each program has: precondition, postcondition, rely and guarantee

$$
\begin{array}{c} \mathsf{c} \\ \{P, R, G, Q\} \end{array} \Bigg|\hspace{0.25cm} \begin{array}{c} \mathsf{c'} \\ \{P', R', G', Q'\} \end{array}
$$

- Syntax, semantics: as before (but no need for assertions)
- Proof rules:
	- \blacktriangleright each program is specified in isolation, assuming a behavior of the "environment" (other programs in parallel)
	- \blacktriangleright each program has: precondition, postcondition, rely and guarantee
	- \blacktriangleright rely and guarantee are relations between 2 states

$$
\begin{array}{c|c} \mathsf{c} & \mathsf{c'} \\ \{P, R, G, Q\} & \end{array} \Bigm\{ \begin{array}{c} \mathsf{c'} \\ \{P', R', G', Q'\} \end{array}
$$

- Syntax, semantics: as before (but no need for assertions)
- Proof rules:
	- \blacktriangleright each program is specified in isolation, assuming a behavior of the "environment" (other programs in parallel)
	- **D** each program has: precondition, postcondition, rely and guarantee
	- \blacktriangleright rely and guarantee are relations between 2 states
	- \blacktriangleright rely expresses the maximum behavior of the environment (the interference that the program can tolerate)

$$
\begin{array}{c|c} \mathsf{c} & \mathsf{c}' \\ \{P, R, G, Q\} & \{P', R', G', Q'\} \end{array}
$$

- Syntax, semantics: as before (but no need for assertions)
- Proof rules:
	- \blacktriangleright each program is specified in isolation, assuming a behavior of the "environment" (other programs in parallel)
	- **D** each program has: precondition, postcondition, rely and guarantee
	- \blacktriangleright rely and guarantee are relations between 2 states
	- \blacktriangleright rely expresses the maximum behavior of the environment (the interference that the program can tolerate)
	- \blacktriangleright guarantee expresses a maximum behavior promised to the environment

$$
\begin{array}{c|c} \mathsf{c} & \mathsf{c'} \\ \{P, R, G, Q\} & \{P', R', G', Q'\} \end{array}
$$

- Syntax, semantics: as before (but no need for assertions)
- Proof rules:
	- \blacktriangleright each program is specified in isolation, assuming a behavior of the "environment" (other programs in parallel)
	- **D** each program has: precondition, postcondition, rely and guarantee
	- \blacktriangleright rely and guarantee are relations between 2 states
	- \blacktriangleright rely expresses the maximum behavior of the environment (the interference that the program can tolerate)
	- \blacktriangleright guarantee expresses a maximum behavior promised to the environment

$$
\begin{array}{c} \mathsf{c} \\ \{P, R, G, Q\} \end{array} \bigg\| \begin{array}{c} \mathsf{c'} \\ \{P', R', G', Q'\} \end{array}
$$

$$
\begin{array}{ccccccccccc}\n\sigma_0 & \xrightarrow{c} & \sigma_1 & \xrightarrow{c} & \sigma_2 & \xrightarrow{c'} & \sigma_3 & \xrightarrow{c} & \sigma_4 & \xrightarrow{c'} & \sigma_5 & \xrightarrow{c'} & \sigma_6 & \xrightarrow{c} & \sigma_7 \\
P & & & & & R & & R & & Q\n\end{array}
$$

Formally:

- Syntax, semantics: as before (but no need for assertions)
- Proof rules (examples):

Formally:

- Syntax, semantics: as before (but no need for assertions)
- Proof rules (examples):

 $P \subseteq \{s. \ f \ s \in Q\} \ \ \{(s,t). \ P \ s \wedge (t = f \ s \vee t = s)\} \subseteq G$ stable $P \ R$ stable $Q \ R$ Basic $f\{P, R, G, Q\}$

Where stable P R $\;=\; \forall \;\sigma \;\sigma'.$ $(P\sigma \wedge R(\sigma ,\sigma')) \rightarrow P\sigma'$ (doing an environment step before or after P should not make P invalid)

Formally:

- Syntax, semantics: as before (but no need for assertions)
- Proof rules (examples):

 $P \subseteq \{s. \ f \ s \in Q\} \ \ \{(s,t). \ P \ s \wedge (t = f \ s \vee t = s)\} \subseteq G$ stable $P \ R$ stable $Q \ R$ Basic $f\{P, R, G, Q\}$

$$
\frac{c_1\{P_1, R_1, G_1, Q_1\} \quad c_2\{P_2, R_2, G_2, Q_2\} \quad G_1 \subseteq R_2 \quad G_2 \subseteq R_1}{c_1 || c_2\{P_1 \cap P_2, R_1 \cap R_2, G_1 \cup G_2, Q_1 \cap Q_2\}}
$$

Where stable P R $\;=\; \forall \;\sigma \;\sigma'.$ $(P\sigma \wedge R(\sigma ,\sigma')) \rightarrow P\sigma'$ (doing an environment step before or after P should not make P invalid)

Intuition: the guarantee of one program is the rely of the other program

Demo

We have seen today ...

- → Need for new reasoning framework for parallel/concurrent programs
- \rightarrow Owicki-Gries
- **→** Rely-Guarantee