
COMP4161: Advanced Topics in Software Verification

P ||Q
Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka

S2/2018

data61.csiro.au

Content

Ü Intro & motivation, getting started [1]

Ü Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

Ü Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, invariants [8b,9]

• (mid-semester break)

• C verification [10]

• CakeML, Isar [11c]

• Concurrency [12]

aa1 due; ba2 due; ca3 due

2 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

If the following true?

{x = 0}
y := x ;
x := x + 1;
{x = 1 ∧ y = 0}

YES!

3 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

If the following true?

{x = 0}
y := x ;
x := x + 1;
{x = 1 ∧ y = 0}

YES!

3 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

Is it still true?

{x = 0}
y := x ; || x := 4
x := x + 1;
{x = 1 ∧ y = 0}

NO!

4 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

Is it still true?

{x = 0}
y := x ; || x := 4
x := x + 1;
{x = 1 ∧ y = 0}

NO!

4 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

So far we have assumed sequential execution

{x = 0}

x 7→ 0 y 7→ −

y := x ;

x 7→ 0 y 7→ 0

x := x + 1;

x 7→ 1 y 7→ 0

{x = 1 ∧ y = 0}

i.e. a single thread of execution accessing the memory state

Program
...

→ ...

CPU

Memory
var 7→ val

This is not always the case!

5 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

So far we have assumed sequential execution

{x = 0} x 7→ 0 y 7→ −
y := x ; x 7→ 0 y 7→ 0
x := x + 1; x 7→ 1 y 7→ 0
{x = 1 ∧ y = 0}

i.e. a single thread of execution accessing the memory state

Program
...

→ ...

CPU

Memory
var 7→ val

This is not always the case!

5 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

So far we have assumed sequential execution

{x = 0} x 7→ 0 y 7→ −
y := x ; x 7→ 0 y 7→ 0
x := x + 1; x 7→ 1 y 7→ 0
{x = 1 ∧ y = 0}

i.e. a single thread of execution accessing the memory state

Program
...

→ ...

CPU

Memory
var 7→ val

This is not always the case!

5 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency

Multithreading

ProgA
...

→ ...

ProgB
→ ...

...

CPU

Memory

Multicore

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory

Distributed

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory Memory

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing
Interleaved execution Parallel execution

Here: we’ll look at shared-memory concurrency

(and we’ll ignore further complications such as caches, weak memory...)

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency

Multithreading

ProgA
...

→ ...

ProgB
→ ...

...

CPU

Memory

Multicore

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory

Distributed

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory Memory

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing

Interleaved execution Parallel execution

Here: we’ll look at shared-memory concurrency

(and we’ll ignore further complications such as caches, weak memory...)

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency

Multithreading

ProgA
...

→ ...

ProgB
→ ...

...

CPU

Memory

Multicore

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory

Distributed

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory Memory

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing
Interleaved execution Parallel execution

Here: we’ll look at shared-memory concurrency

(and we’ll ignore further complications such as caches, weak memory...)

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency

Multithreading

ProgA
...

→ ...

ProgB
→ ...

...

CPU

Memory

Multicore

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory

Distributed

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory Memory

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing
Interleaved execution Parallel execution

Here: we’ll look at shared-memory concurrency

(and we’ll ignore further complications such as caches, weak memory...)

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency

Multithreading

ProgA
...

→ ...

ProgB
→ ...

...

CPU

Memory

Multicore

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory

Distributed

ProgA
...

→ ...

ProgB
→ ...

...

CPU CPU

Memory Memory

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing
Interleaved execution Parallel execution

Here: we’ll look at shared-memory concurrency

(and we’ll ignore further complications such as caches, weak memory...)

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Goal

We want to be able to reason about parallel composition of programs:

{precondition}

ProgA
...

→ ...

||
ProgB
→ ...

...

{postcondition}

2 kinds of properties:

Safety: Liveness:
“something bad does not happen” “something good must happen”

(no bad state can be reached) (specific states must be reached)
e.g. {x = 0} e.g. the program terminates

With concurrency: much harder! With concurrency: new problems!
(set of reachable states much bigger) (dead-locks, live-locks...)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Goal

We want to be able to reason about parallel composition of programs:

{precondition}

ProgA
...

→ ...

||
ProgB
→ ...

...

{postcondition}

2 kinds of properties:

Safety: Liveness:
“something bad does not happen” “something good must happen”

(no bad state can be reached) (specific states must be reached)
e.g. {x = 0} e.g. the program terminates

With concurrency: much harder! With concurrency: new problems!
(set of reachable states much bigger) (dead-locks, live-locks...)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Goal

We want to be able to reason about parallel composition of programs:

{precondition}

ProgA
...

→ ...

||
ProgB
→ ...

...

{postcondition}

2 kinds of properties:

Safety: Liveness:
“something bad does not happen” “something good must happen”

(no bad state can be reached) (specific states must be reached)

e.g. {x = 0} e.g. the program terminates

With concurrency: much harder! With concurrency: new problems!
(set of reachable states much bigger) (dead-locks, live-locks...)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Goal

We want to be able to reason about parallel composition of programs:

{precondition}

ProgA
...

→ ...

||
ProgB
→ ...

...

{postcondition}

2 kinds of properties:

Safety: Liveness:
“something bad does not happen” “something good must happen”

(no bad state can be reached) (specific states must be reached)
e.g. {x = 0} e.g. the program terminates

With concurrency: much harder! With concurrency: new problems!
(set of reachable states much bigger) (dead-locks, live-locks...)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Goal

We want to be able to reason about parallel composition of programs:

{precondition}

ProgA
...

→ ...

||
ProgB
→ ...

...

{postcondition}

2 kinds of properties:

Safety: Liveness:
“something bad does not happen” “something good must happen”

(no bad state can be reached) (specific states must be reached)
e.g. {x = 0} e.g. the program terminates

With concurrency: much harder!

With concurrency: new problems!

(set of reachable states much bigger)

(dead-locks, live-locks...)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Goal

We want to be able to reason about parallel composition of programs:

{precondition}

ProgA
...

→ ...

||
ProgB
→ ...

...

{postcondition}

2 kinds of properties:

Safety: Liveness:
“something bad does not happen” “something good must happen”

(no bad state can be reached) (specific states must be reached)
e.g. {x = 0} e.g. the program terminates

With concurrency: much harder! With concurrency: new problems!
(set of reachable states much bigger) (dead-locks, live-locks...)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Goal

We want to be able to reason about parallel composition of programs:

{precondition}

ProgA
...

→ ...

||
ProgB
→ ...

...

{postcondition}

Here:

Ü We focus on safety properties: postcondition holds if reached

Ü We will define parallel composition (||) as non-deterministic interleaving

Ü We go back to our minimal IMP language (forget about C and monads)

datatype com = SKIP
| Assign vname aexp (:=)
| Semi com com (;)
| Cond bexp com com (IF THEN ELSE)
| While bexp com (WHILE DO OD)

8 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Goal

We want to be able to reason about parallel composition of programs:

{precondition}

ProgA
...

→ ...

||
ProgB
→ ...

...

{postcondition}

Here:

Ü We focus on safety properties: postcondition holds if reached

Ü We will define parallel composition (||) as non-deterministic interleaving

Ü We go back to our minimal IMP language (forget about C and monads)

datatype com = SKIP
| Assign vname aexp (:=)
| Semi com com (;)
| Cond bexp com com (IF THEN ELSE)
| While bexp com (WHILE DO OD)

8 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Goal

We want to be able to reason about parallel composition of programs:

{precondition}

ProgA
...

→ ...

||
ProgB
→ ...

...

{postcondition}

Here:

Ü We focus on safety properties: postcondition holds if reached

Ü We will define parallel composition (||) as non-deterministic interleaving

Ü We go back to our minimal IMP language (forget about C and monads)

datatype com = SKIP
| Assign vname aexp (:=)
| Semi com com (;)
| Cond bexp com com (IF THEN ELSE)
| While bexp com (WHILE DO OD)

8 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

If the following true?

{x = 0}
y := x ;
x := x + 1;
{x = 1 ∧ y = 0}

YES!

9 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

Is it still true?

{x = 0}
y := x ; || x := 4
x := x + 1;
{x = 1 ∧ y = 0}

NO!

What is going wrong?
What do we need to change?

Ü to make sure we don’t prove wrong statements!

Ü to allow us to prove true statements about concurrent programs

10 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

Is it still true?

{x = 0}
y := x ; || x := 4
x := x + 1;
{x = 1 ∧ y = 0}

NO!

What is going wrong?
What do we need to change?

Ü to make sure we don’t prove wrong statements!

Ü to allow us to prove true statements about concurrent programs

10 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this?

Using Hoare logic rules!

{x = 0}

=⇒{x + 1 = 1 ∧ x = 0 }

y := x ;

{x + 1 = 1 ∧ y = 0}

x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:

If the program “y := x ; x := x + 1” is executed from a state satisfying

{x = 0} then, if it terminates, the resulting state satisfied {x = 1 ∧ y = 0}

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this? Using Hoare logic rules!

{x = 0}

=⇒{x + 1 = 1 ∧ x = 0 }

y := x ;

{x + 1 = 1 ∧ y = 0}

x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:

If the program “y := x ; x := x + 1” is executed from a state satisfying

{x = 0} then, if it terminates, the resulting state satisfied {x = 1 ∧ y = 0}

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this? Using Hoare logic rules!

{x = 0}

=⇒{x + 1 = 1 ∧ x = 0 }

y := x ;

{x + 1 = 1 ∧ y = 0}

x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:

If the program “y := x ; x := x + 1” is executed from a state satisfying

{x = 0} then, if it terminates, the resulting state satisfied {x = 1 ∧ y = 0}

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this? Using Hoare logic rules!

{x = 0}

=⇒{x + 1 = 1 ∧ x = 0 }

y := x ; {x + 1 = 1 ∧ y = 0}
x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:

If the program “y := x ; x := x + 1” is executed from a state satisfying

{x = 0} then, if it terminates, the resulting state satisfied {x = 1 ∧ y = 0}

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this? Using Hoare logic rules!

{x = 0} =⇒{x + 1 = 1 ∧ x = 0 }
y := x ; {x + 1 = 1 ∧ y = 0}
x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:

If the program “y := x ; x := x + 1” is executed from a state satisfying

{x = 0} then, if it terminates, the resulting state satisfied {x = 1 ∧ y = 0}

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this? Using Hoare logic rules!

{x = 0} =⇒{x + 1 = 1 ∧ x = 0 }
y := x ; {x + 1 = 1 ∧ y = 0}
x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:

If the program “y := x ; x := x + 1” is executed from a state satisfying

{x = 0} then, if it terminates, the resulting state satisfied {x = 1 ∧ y = 0}

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this? Using Hoare logic rules!

{x = 0} =⇒{x + 1 = 1 ∧ x = 0 }
y := x ; {x + 1 = 1 ∧ y = 0}
x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:
〈y := x ; x := x + 1, σ〉 → σ′ ∧ x σ = 0 −→ x σ′ = 1 ∧ y σ′ = 0

Where:
〈c1, σ〉 → σ′ 〈c2, σ′〉 → σ′′

〈c1; c2, σ〉 → σ′′
e σ = v

〈x := e, σ〉 → σ[x 7→ v]

Soundness: ` {P} c {Q} =⇒ ∀σ σ′. 〈c , σ〉 → σ′ ∧ P σ −→ Q σ′

What changes when we have another program running in parallel?

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this? Using Hoare logic rules!

{x = 0} =⇒{x + 1 = 1 ∧ x = 0 }
y := x ; {x + 1 = 1 ∧ y = 0}
x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:
〈y := x ; x := x + 1, σ〉 → σ′ ∧ x σ = 0 −→ x σ′ = 1 ∧ y σ′ = 0

Where:
〈c1, σ〉 → σ′ 〈c2, σ′〉 → σ′′

〈c1; c2, σ〉 → σ′′
e σ = v

〈x := e, σ〉 → σ[x 7→ v]

Soundness: ` {P} c {Q} =⇒ ∀σ σ′. 〈c , σ〉 → σ′ ∧ P σ −→ Q σ′

What changes when we have another program running in parallel?

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this? Using Hoare logic rules!

{x = 0} =⇒{x + 1 = 1 ∧ x = 0 }
y := x ; {x + 1 = 1 ∧ y = 0}
x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:
〈y := x ; x := x + 1, σ〉 → σ′ ∧ x σ = 0 −→ x σ′ = 1 ∧ y σ′ = 0

Where:
〈c1, σ〉 → σ′ 〈c2, σ′〉 → σ′′

〈c1; c2, σ〉 → σ′′
e σ = v

〈x := e, σ〉 → σ[x 7→ v]

Soundness: ` {P} c {Q} =⇒ ∀σ σ′. 〈c , σ〉 → σ′ ∧ P σ −→ Q σ′

What changes when we have another program running in parallel?

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

How would we have proved this? Using Hoare logic rules!

{x = 0} =⇒{x + 1 = 1 ∧ x = 0 }
y := x ; {x + 1 = 1 ∧ y = 0}
x := x + 1;
{x = 1 ∧ y = 0}

` {P} c1 {R} ` {R} c2 {Q}
` {P} c1; c2 {Q}

` {P[x 7→ e]} x := e {P}

Why does this make it true? What does it mean that it’s true?
It means:
〈y := x ; x := x + 1, σ〉 → σ′ ∧ x σ = 0 −→ x σ′ = 1 ∧ y σ′ = 0

Where:
〈c1, σ〉 → σ′ 〈c2, σ′〉 → σ′′

〈c1; c2, σ〉 → σ′′
e σ = v

〈x := e, σ〉 → σ[x 7→ v]

Soundness: ` {P} c {Q} =⇒ ∀σ σ′. 〈c , σ〉 → σ′ ∧ P σ −→ Q σ′

What changes when we have another program running in parallel?

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

{x = 0}
y := x ;

((((((((((hhhhhhhhhh
{x + 1 = 1 ∧ y = 0} || x := 4

x := x + 1;
{x = 1 ∧ y = 0}

Ü Execution is interleaved; Intermediate assertions can be interferred with

Ü Need a new reasoning framework!

Ü New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

Ü (1969: Hoare Logic (Tony Hoare))

Ü 1976: Owicki-Gries (Susan Owicki and David Gries)

Ü 1981: Rely-Guarantee (Cliff Jones)

Ü ...

OG+RG formalised in Isabelle/HOL by Leonor Prensa Nieto, 2002

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

{x = 0}
y := x ;

((((((((((hhhhhhhhhh
{x + 1 = 1 ∧ y = 0} || x := 4

x := x + 1;
{x = 1 ∧ y = 0}

Ü Execution is interleaved; Intermediate assertions can be interferred with

Ü Need a new reasoning framework!

Ü New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

Ü (1969: Hoare Logic (Tony Hoare))

Ü 1976: Owicki-Gries (Susan Owicki and David Gries)

Ü 1981: Rely-Guarantee (Cliff Jones)

Ü ...

OG+RG formalised in Isabelle/HOL by Leonor Prensa Nieto, 2002

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

{x = 0}
y := x ;

((((((((((hhhhhhhhhh
{x + 1 = 1 ∧ y = 0} || x := 4

x := x + 1;
{x = 1 ∧ y = 0}

Ü Execution is interleaved; Intermediate assertions can be interferred with

Ü Need a new reasoning framework!

Ü New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

Ü (1969: Hoare Logic (Tony Hoare))

Ü 1976: Owicki-Gries (Susan Owicki and David Gries)

Ü 1981: Rely-Guarantee (Cliff Jones)

Ü ...

OG+RG formalised in Isabelle/HOL by Leonor Prensa Nieto, 2002

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

{x = 0}
y := x ;

((((((((((hhhhhhhhhh
{x + 1 = 1 ∧ y = 0} || x := 4

x := x + 1;
{x = 1 ∧ y = 0}

Ü Execution is interleaved; Intermediate assertions can be interferred with

Ü Need a new reasoning framework!

Ü New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

Ü (1969: Hoare Logic (Tony Hoare))

Ü 1976: Owicki-Gries (Susan Owicki and David Gries)

Ü 1981: Rely-Guarantee (Cliff Jones)

Ü ...

OG+RG formalised in Isabelle/HOL by Leonor Prensa Nieto, 2002

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

{x = 0}
y := x ;

((((((((((hhhhhhhhhh
{x + 1 = 1 ∧ y = 0} || x := 4

x := x + 1;
{x = 1 ∧ y = 0}

Ü Execution is interleaved; Intermediate assertions can be interferred with

Ü Need a new reasoning framework!

Ü New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

Ü (1969: Hoare Logic (Tony Hoare))

Ü 1976: Owicki-Gries (Susan Owicki and David Gries)

Ü 1981: Rely-Guarantee (Cliff Jones)

Ü ...

OG+RG formalised in Isabelle/HOL by Leonor Prensa Nieto, 2002

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency

{x = 0}
y := x ;

((((((((((hhhhhhhhhh
{x + 1 = 1 ∧ y = 0} || x := 4

x := x + 1;
{x = 1 ∧ y = 0}

Ü Execution is interleaved; Intermediate assertions can be interferred with

Ü Need a new reasoning framework!

Ü New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

Ü (1969: Hoare Logic (Tony Hoare))

Ü 1976: Owicki-Gries (Susan Owicki and David Gries)

Ü 1981: Rely-Guarantee (Cliff Jones)

Ü ...

OG+RG formalised in Isabelle/HOL by Leonor Prensa Nieto, 2002

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Intuition:

• Syntax: our IMP language + Parallel operator + Await operator

• Semantics:
I P || Q: pick one program and execute its current instruction
I AWAIT b DO c OD: if guard is true execute c atomically

• Proof rules:
I you prove local correctness (as before)
I your prove interference-freedom (assertions not interfered with)

{is even x}
x := x + 1;

{is even x + 1}

x := x + 2
x := x + 1;
{is even x}

Ü Needs a fully annotated program!

Ü Needs a “small-step semantics” 〈c, σ〉 → 〈c ′, σ′〉
(before big-step: 〈c, σ〉 → σ′)

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Intuition:

• Syntax: our IMP language + Parallel operator + Await operator

• Semantics:
I P || Q: pick one program and execute its current instruction
I AWAIT b DO c OD: if guard is true execute c atomically

• Proof rules:
I you prove local correctness (as before)
I your prove interference-freedom (assertions not interfered with)

{is even x}
x := x + 1;

{is even x + 1}

x := x + 2
x := x + 1;
{is even x}

Ü Needs a fully annotated program!

Ü Needs a “small-step semantics” 〈c, σ〉 → 〈c ′, σ′〉
(before big-step: 〈c, σ〉 → σ′)

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Intuition:

• Syntax: our IMP language + Parallel operator + Await operator

• Semantics:
I P || Q: pick one program and execute its current instruction
I AWAIT b DO c OD: if guard is true execute c atomically

• Proof rules:
I you prove local correctness (as before)
I your prove interference-freedom (assertions not interfered with)

{is even x}
x := x + 1;

{is even x + 1}

x := x + 2
x := x + 1;
{is even x}

Ü Needs a fully annotated program!

Ü Needs a “small-step semantics” 〈c, σ〉 → 〈c ′, σ′〉
(before big-step: 〈c, σ〉 → σ′)

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Intuition:

• Syntax: our IMP language + Parallel operator + Await operator

• Semantics:
I P || Q: pick one program and execute its current instruction
I AWAIT b DO c OD: if guard is true execute c atomically

• Proof rules:
I you prove local correctness (as before)
I your prove interference-freedom (assertions not interfered with)

{is even x}
x := x + 1; {is even x + 1} x := x + 2
x := x + 1;
{is even x}

Ü Needs a fully annotated program!

Ü Needs a “small-step semantics” 〈c, σ〉 → 〈c ′, σ′〉
(before big-step: 〈c, σ〉 → σ′)

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Intuition:

• Syntax: our IMP language + Parallel operator + Await operator

• Semantics:
I P || Q: pick one program and execute its current instruction
I AWAIT b DO c OD: if guard is true execute c atomically

• Proof rules:
I you prove local correctness (as before)
I your prove interference-freedom (assertions not interfered with)

{is even x}
x := x + 1; {is even x + 1} x := x + 2
x := x + 1;
{is even x}

Ü Needs a fully annotated program!

Ü Needs a “small-step semantics” 〈c, σ〉 → 〈c ′, σ′〉
(before big-step: 〈c, σ〉 → σ′)

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Formally:

• Syntax: our IMP language + Parallel operator + Await operator

• Semantics:

〈c1, σ〉 → 〈c ′1, σ′〉
〈c1||c2, σ〉 → 〈c ′1||c2, σ′〉

〈c2, σ〉 → 〈c ′2, σ′〉
〈c1||c2, σ〉 → 〈c1||c ′2, σ′〉

• Hoare rules:

{P1} c1 {Q1} {P2} c2 {Q2} interfree c1 c2 interfree c2 c1

{P1 ∧ P2} c1||c2 {Q1 ∧ Q2}

Where
interfree c1 c2 ≡
∀p ∈ (assertions c1). ∀(a, c) ∈ (atomics c2). {p ∧ a}c{p}

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Formally:

• Syntax: our IMP language + Parallel operator + Await operator

• Semantics:

〈c1, σ〉 → 〈c ′1, σ′〉
〈c1||c2, σ〉 → 〈c ′1||c2, σ′〉

〈c2, σ〉 → 〈c ′2, σ′〉
〈c1||c2, σ〉 → 〈c1||c ′2, σ′〉

• Hoare rules:

{P1} c1 {Q1} {P2} c2 {Q2} interfree c1 c2 interfree c2 c1

{P1 ∧ P2} c1||c2 {Q1 ∧ Q2}

Where
interfree c1 c2 ≡
∀p ∈ (assertions c1). ∀(a, c) ∈ (atomics c2). {p ∧ a}c{p}

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Formally:

• Syntax: our IMP language + Parallel operator + Await operator

• Semantics:

〈c1, σ〉 → 〈c ′1, σ′〉
〈c1||c2, σ〉 → 〈c ′1||c2, σ′〉

〈c2, σ〉 → 〈c ′2, σ′〉
〈c1||c2, σ〉 → 〈c1||c ′2, σ′〉

• Hoare rules:

{P1} c1 {Q1} {P2} c2 {Q2} interfree c1 c2 interfree c2 c1

{P1 ∧ P2} c1||c2 {Q1 ∧ Q2}

Where
interfree c1 c2 ≡
∀p ∈ (assertions c1). ∀(a, c) ∈ (atomics c2). {p ∧ a}c{p}

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Ü Quadratic explosion of proof obligations! (verification conditions)

Ü Not compositional

Ü Not complete: sometimes need auxilliary/ghost variables

{x = 0}
x := x + 1; x := x + 1

{x = 2}

{x = 0 ∧ a1 = 0 ∧ a2 = 0}

∧a1 = 0 ∧a2 = 0
{a2 = 0 ∧ x = 0 ∨ a2 = 1 ∧ x = 1} {a1 = 0 ∧ x = 0 ∨ a1 = 1 ∧ x = 1}

< x := x + 1; a1 := 1 > < x := x + 1; a2 := 1 >

{a2 = 0 ∧ x = 1 ∨ a2 = 1 ∧ x = 2} {a1 = 0 ∧ x = 1 ∨ a1 = 1 ∧ x = 2}
∧a1 = 1 ∧a2 = 1

{x = 2}

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Ü Quadratic explosion of proof obligations! (verification conditions)

Ü Not compositional

Ü Not complete: sometimes need auxilliary/ghost variables

{x = 0}
x := x + 1; x := x + 1

{x = 2}

{x = 0 ∧ a1 = 0 ∧ a2 = 0}

∧a1 = 0 ∧a2 = 0
{a2 = 0 ∧ x = 0 ∨ a2 = 1 ∧ x = 1} {a1 = 0 ∧ x = 0 ∨ a1 = 1 ∧ x = 1}

< x := x + 1; a1 := 1 > < x := x + 1; a2 := 1 >

{a2 = 0 ∧ x = 1 ∨ a2 = 1 ∧ x = 2} {a1 = 0 ∧ x = 1 ∨ a1 = 1 ∧ x = 2}
∧a1 = 1 ∧a2 = 1

{x = 2}

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Ü Quadratic explosion of proof obligations! (verification conditions)

Ü Not compositional

Ü Not complete: sometimes need auxilliary/ghost variables

{x = 0}
x := x + 1; x := x + 1

{x = 2}

{x = 0 ∧ a1 = 0 ∧ a2 = 0}

∧a1 = 0 ∧a2 = 0
{a2 = 0 ∧ x = 0 ∨ a2 = 1 ∧ x = 1} {a1 = 0 ∧ x = 0 ∨ a1 = 1 ∧ x = 1}

< x := x + 1; a1 := 1 > < x := x + 1; a2 := 1 >

{a2 = 0 ∧ x = 1 ∨ a2 = 1 ∧ x = 2} {a1 = 0 ∧ x = 1 ∨ a1 = 1 ∧ x = 2}
∧a1 = 1 ∧a2 = 1

{x = 2}

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Ü Quadratic explosion of proof obligations! (verification conditions)

Ü Not compositional

Ü Not complete: sometimes need auxilliary/ghost variables

{x = 0}
x := x + 1; x := x + 1

{x = 2}

{x = 0 ∧ a1 = 0 ∧ a2 = 0}

∧a1 = 0 ∧a2 = 0

{a2 = 0 ∧ x = 0 ∨ a2 = 1 ∧ x = 1} {a1 = 0 ∧ x = 0 ∨ a1 = 1 ∧ x = 1}
< x := x + 1; a1 := 1 > < x := x + 1; a2 := 1 >

{a2 = 0 ∧ x = 1 ∨ a2 = 1 ∧ x = 2} {a1 = 0 ∧ x = 1 ∨ a1 = 1 ∧ x = 2}

∧a1 = 1 ∧a2 = 1

{x = 2}

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework

Ü Quadratic explosion of proof obligations! (verification conditions)

Ü Not compositional

Ü Not complete: sometimes need auxilliary/ghost variables

{x = 0}
x := x + 1; x := x + 1

{x = 2}

{x = 0 ∧ a1 = 0 ∧ a2 = 0}
∧a1 = 0 ∧a2 = 0
{a2 = 0 ∧ x = 0 ∨ a2 = 1 ∧ x = 1} {a1 = 0 ∧ x = 0 ∨ a1 = 1 ∧ x = 1}

< x := x + 1; a1 := 1 > < x := x + 1; a2 := 1 >
{a2 = 0 ∧ x = 1 ∨ a2 = 1 ∧ x = 2} {a1 = 0 ∧ x = 1 ∨ a1 = 1 ∧ x = 2}
∧a1 = 1 ∧a2 = 1

{x = 2}

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Demo

Rely-Guarantee?

Intuition:

• Syntax, semantics: as before (but no need for assertions)

• Proof rules:
I each program is specified in isolation, assuming a behavior of the

“environment” (other programs in parallel)

I each program has: precondition, postcondition, rely and guarantee
I rely and guarantee are relations between 2 states
I rely expresses the maximum behavior of the environment (the

interference that the program can tolerate)
I guarantee expresses a maximum behavior promised to the

environment

c c’
{P,R,G ,Q} {P ′,R ′,G ′,Q ′}

σ0
c→ σ1

c→ σ2
c′→ σ3

c→ σ4
c′→ σ5

c′→ σ6
c→ σ7

P R R R Q

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

Intuition:

• Syntax, semantics: as before (but no need for assertions)

• Proof rules:
I each program is specified in isolation, assuming a behavior of the

“environment” (other programs in parallel)
I each program has: precondition, postcondition, rely and guarantee

I rely and guarantee are relations between 2 states
I rely expresses the maximum behavior of the environment (the

interference that the program can tolerate)
I guarantee expresses a maximum behavior promised to the

environment

c c’
{P,R,G ,Q} {P ′,R ′,G ′,Q ′}

σ0
c→ σ1

c→ σ2
c′→ σ3

c→ σ4
c′→ σ5

c′→ σ6
c→ σ7

P R R R Q

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

Intuition:

• Syntax, semantics: as before (but no need for assertions)

• Proof rules:
I each program is specified in isolation, assuming a behavior of the

“environment” (other programs in parallel)
I each program has: precondition, postcondition, rely and guarantee
I rely and guarantee are relations between 2 states

I rely expresses the maximum behavior of the environment (the
interference that the program can tolerate)

I guarantee expresses a maximum behavior promised to the
environment

c c’
{P,R,G ,Q} {P ′,R ′,G ′,Q ′}

σ0
c→ σ1

c→ σ2
c′→ σ3

c→ σ4
c′→ σ5

c′→ σ6
c→ σ7

P R R R Q

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

Intuition:

• Syntax, semantics: as before (but no need for assertions)

• Proof rules:
I each program is specified in isolation, assuming a behavior of the

“environment” (other programs in parallel)
I each program has: precondition, postcondition, rely and guarantee
I rely and guarantee are relations between 2 states
I rely expresses the maximum behavior of the environment (the

interference that the program can tolerate)

I guarantee expresses a maximum behavior promised to the
environment

c c’
{P,R,G ,Q} {P ′,R ′,G ′,Q ′}

σ0
c→ σ1

c→ σ2
c′→ σ3

c→ σ4
c′→ σ5

c′→ σ6
c→ σ7

P R R R Q

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

Intuition:

• Syntax, semantics: as before (but no need for assertions)

• Proof rules:
I each program is specified in isolation, assuming a behavior of the

“environment” (other programs in parallel)
I each program has: precondition, postcondition, rely and guarantee
I rely and guarantee are relations between 2 states
I rely expresses the maximum behavior of the environment (the

interference that the program can tolerate)
I guarantee expresses a maximum behavior promised to the

environment

c c’
{P,R,G ,Q} {P ′,R ′,G ′,Q ′}

σ0
c→ σ1

c→ σ2
c′→ σ3

c→ σ4
c′→ σ5

c′→ σ6
c→ σ7

P R R R Q

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

Intuition:

• Syntax, semantics: as before (but no need for assertions)

• Proof rules:
I each program is specified in isolation, assuming a behavior of the

“environment” (other programs in parallel)
I each program has: precondition, postcondition, rely and guarantee
I rely and guarantee are relations between 2 states
I rely expresses the maximum behavior of the environment (the

interference that the program can tolerate)
I guarantee expresses a maximum behavior promised to the

environment

c c’
{P,R,G ,Q} {P ′,R ′,G ′,Q ′}

σ0
c→ σ1

c→ σ2
c′→ σ3

c→ σ4
c′→ σ5

c′→ σ6
c→ σ7

P R R R Q

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

Formally:

• Syntax, semantics: as before (but no need for assertions)

• Proof rules (examples):

P ⊆ {s. f s ∈ Q} {(s, t). P s ∧ (t = f s ∨ t = s)} ⊆ G stable P R stable Q R

Basic f {P,R,G ,Q}

c1{P1,R1,G1,Q1} c2{P2,R2,G2,Q2} G1 ⊆ R2 G2 ⊆ R1

c1||c2{P1 ∩ P2,R1 ∩ R2,G1 ∪ G2,Q1 ∩ Q2}

Where stable P R = ∀ σ σ′. (Pσ ∧ R(σ, σ′))→ Pσ′

(doing an environment step before or after P should not make P invalid)

Intuition: the guarantee of one program is the rely of the other program

19 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

Formally:

• Syntax, semantics: as before (but no need for assertions)

• Proof rules (examples):

P ⊆ {s. f s ∈ Q} {(s, t). P s ∧ (t = f s ∨ t = s)} ⊆ G stable P R stable Q R

Basic f {P,R,G ,Q}

c1{P1,R1,G1,Q1} c2{P2,R2,G2,Q2} G1 ⊆ R2 G2 ⊆ R1

c1||c2{P1 ∩ P2,R1 ∩ R2,G1 ∪ G2,Q1 ∩ Q2}

Where stable P R = ∀ σ σ′. (Pσ ∧ R(σ, σ′))→ Pσ′

(doing an environment step before or after P should not make P invalid)

Intuition: the guarantee of one program is the rely of the other program

19 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

Formally:

• Syntax, semantics: as before (but no need for assertions)

• Proof rules (examples):

P ⊆ {s. f s ∈ Q} {(s, t). P s ∧ (t = f s ∨ t = s)} ⊆ G stable P R stable Q R

Basic f {P,R,G ,Q}

c1{P1,R1,G1,Q1} c2{P2,R2,G2,Q2} G1 ⊆ R2 G2 ⊆ R1

c1||c2{P1 ∩ P2,R1 ∩ R2,G1 ∪ G2,Q1 ∩ Q2}

Where stable P R = ∀ σ σ′. (Pσ ∧ R(σ, σ′))→ Pσ′

(doing an environment step before or after P should not make P invalid)

Intuition: the guarantee of one program is the rely of the other program

19 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Demo

We have seen today ...

Ü Need for new reasoning framework for parallel/concurrent programs

Ü Owicki-Gries

Ü Rely-Guarantee

21 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

