| | | |
N NS SN\

| | | | | |
S\ /\/ﬁ/ﬁ/w W
\ 7~ ~ - \I/ I/ \I \I/ ~

N N7 e
COMP4161: Advanced Topics in Software Verification I I I

7~ 7

F““Q \)ﬁ)l

Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaks” ™

52/2018
databl.csiro.au %

=» Intro & motivation, getting started \ /rl]

=» Foundations & Principles

e Lambda Calculus, natural deduction [1,2]
o Higher Order Logic [37]
e Term rewriting [4]

=» Proof & Specification Techniques

o Inductively defined sets, rule induction [5]
e Datatypes, recursion, induction [6, 7]
e Hoare logic, proofs about programs, invariants [8°,9]
o (mid-semester break)

o C verification [10]
o CakeML, lIsar [11]
e Concurrency [12]

a1 due; a2 due; a3 due

2 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

If the following true?

{x =0}

y =X
x =x+1;
{x=1Ay =0}
YES!

3 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

Is it still true?

{x =0}

y =X | x:=4
xX:=x—+1;

{x=1Ay =0}

NO!

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

So far we have assumed sequential execution

{x =0} x—=0 y——
Y =X x—=0 y—20
x:=x+1; x—1 y—20
{x=1Ay =0}

i.e. a single thread of execution accessing the memory state

Program

CPU

Memory
var — val

5 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency I{ATA | %
b1
7

Multithreading Multicore Distribhed
Proga || Progg Progs || Progg Proga Progg
CPU CPU CPU CPU CPU
Memory Memory Memory| | Memory|

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing
Interleaved execution Parallel execution

Here: we'll look at shared-memory concurrency

(and we'll ignore further complications such as caches, weak

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Goal EIATA | %

We want to be able to reason about parallel composition of
programs:

{precondition}

Proga Progg

I - ..

{postcondition}

2 kinds of properties:

Safety: Liveness:
“something bad does not happen” “something good must happen”
(no bad state can be reached) (specific states must be reached)
e.g. {x=0} e.g. the program terminates

\YH a . ~ orl N i O - pw_nrohlemcl!

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Goal

IIIATA | %

We want to be able to reason about parallel composition of

programs:
{precondition}
Proga Progg
I ..
{postcondition}
Here:

=» We focus on safety properties: postcondition holds if reached
=> We will define parallel composition (||) as non-deterministic
interleaving

=» We go back to our minimal IMP language (forget about C and
monads)

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

If the following true?

{x =0}

y =X
x =x+1;
{x=1Ay =0}
YES!

9 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

Is it still true?

{x =0}

y = X; | x:=4
x:=x+1,

{x=1Ay =0}

NO!

What is going wrong?
What do we need to change?

=» to make sure we don't prove wrong statements!
=» to allow us to prove true statements about concurrent programs

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

- L L] /
Program verification so far =y %
b1
N~

How would we have proved this? Using Hoare logic rules!
{x=0} ={x+1=1Ax=0}

y=x;{x+1=1Ay =0} " {Pra iRy P {R} e {Q)

F AP} a e {Q}

x =x+1;

{x=1ny=0} F {Plx—e]} x=e {P}
Why does this make it true? What does it mean that it’s
true?

It means:

If the program "y := x; x := x+ 1" is executed from a state satisfying
{x =0} then, if it terminates, the resulting state satisfied
{x=1Ay =0}

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far

DATA | %

How would we have proved this? Using Hoare logic ru(s'
{x=0} ={x+1=1Ax=0}

F{Pta{R} F {R}2{Q}
y=x;{x+1=1Ay =0} _
x:=x+1, F AP} aia {Q}
{x=1Ay =0}

F {P[x—e¢€]} x:=e {P}

Why does this make it true? What does it mean that it’s
true?

It means:

(y=x; x:=x+l,0) 50" AN xo0=0 — xo' =1ANyoc' =0
Where: , , .
(c,0) 20" (a0d) =0 eoc=yv
(c1;0,0) = o (x:=e,0) = o[x— V]

12 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency IDATA | %

{x =0}
yi:X;M || x:=4
x:=x-+1;

{x=1Ay =0}

=» Execution is interleaved; Intermediate assertions can be interferred
with

=» Need a new reasoning framework!

=» New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

=» (1969: Hoare Logic (Tony Hoare))
=» 1976: Owicki-Gries (Susan Owicki and David Gries)
=» 1981: Rely-Guarantee (Cliff Jones)

13 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework | AT | %

Intuition:

e Syntax: our IMP language + Parallel operator + Await
operator
e Semantics:
> P || Q: pick one program and execute its current instruction
> AWAIT b DO c OD: if guard is true execute ¢ atomically
e Proof rules:
> you prove local correctness (as before)
> your prove interference-freedom (assertions not interfered with)

{is_even x}
x:=x+1; {is_even x + 1}
x =x+1;
{is_even x}

X =x+2

=» Needs a fully annotated program!
=*» Needs a “small-step semantics”

14 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

Formally:
e Syntax: our IMP language + Parallel operator + Await
operator
e Semantics:
(c1,0) = (c1,07) (c2,0) = (3, 0")

(alle2,0) = (cllez, o) (alle,0) = {alle, o))

e Hoare rules:
{P1} a {@1} {P2} oo {Qx} interfree c; co interfree ca 1
{P1 A P2} cil|e {Q1 A @}

Where
interfree ¢1 ¢ =
Vp € (assertions c1). V(a, c) € (atomics ¢3). {p A a}c{p}

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework PN
| 61 |®
N~

=» Quadratic explosion of proof obligations! (verification
conditions)

=» Not compositional

=» Not complete: sometimes need auxilliary/ghost variables

{x=0}
x:=x+1; ||x:=x+1

{x=2}

{x=0MNa; =0Aa, =0}
Na; =0 Nay =
{a2=0Ax=0V aa=1Ax=1} |[{a1=0Ax=0V ag=1Ax
<x=x4+la=1>|| <x=x+1la=1>
{a2=0Ax=1V aa=1Ax=2} |[{a1=0Ax=1V ag=1Ax
Aa; =1 Nay =

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Rely-Guarantee?

DATA | %

o Syntax, semantics: as before (but no need for assertions)
e Proof rules:
> each program is specified in isolation, assuming a behavior of
the “environment” (other programs in parallel)
> each program has: precondition, postcondition, rely and
guarantee
> rely and guarantee are relations between 2 states
> rely expresses the maximum behavior of the environment (the
interference that the program can tolerate)
> guarantee expresses a maximum behavior promised to the
environment

Intuition:

C c'
{P7 R7G7Q} H {Pllele7 Q/}

18 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

DATA | %

e Syntax, semantics: as before (but no need for assertions)
o Proof rules (examples):

Formally:

PC{s.fseQ} {(s;t). PsA(t=fsVt=s)} CG stable PR stable Q
Basic f{P,R, G, Q}

ca{Pi,R1, G, Q} @{P:,R,G, @} GCR GCR
alle{PiN Py, RINR, G1U G2, Q1 N @2}

Where stable PR = V o o'. (Po A R(a,0")) — Po’
(doing an environment step before or after P should not make P invalid)

Intuition: the guarantee of one program is the rely of the other
program

19 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

We have seen today ... DATA | %

=>» Need for new reasoning framework for parallel /concurrent programs
=» Owicki-Gries
=>» Rely-Guarantee

21 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

