

data61.csiro.au

Content

→ Intro & motivation, getting started	
 → Foundations & Principles Lambda Calculus, natural deduction Higher Order Logic Term rewriting 	[1,2] [3 ^a] [4]
 → Proof & Specification Techniques Inductively defined sets, rule induction Datatypes, recursion, induction Hoare logic, proofs about programs, invariants (mid-semester break) C verification CakeML, Isar Concurrency 	[5] [6, 7] [8 ^b ,9] [10] [11 ^c] [12]

DATA

^aa1 due; ^ba2 due; ^ca3 due

➔ Equations and Term Rewriting

➔ Equations and Term Rewriting

- ➔ Equations and Term Rewriting
- → Confluence and Termination of reduction systems

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

 \rightarrow *l* \rightarrow *r* **applicable** to term *t*[*s*]

→ I → r applicable to term t[s] if there is substitution σ such that σ I = s

- → $I \longrightarrow r$ applicable to term t[s]if there is substitution σ such that $\sigma I = s$
- → Result: $t[\sigma r]$

- → $I \longrightarrow r$ applicable to term t[s]if there is substitution σ such that $\sigma I = s$
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

- → I → r applicable to term t[s] if there is substitution σ such that σ I = s
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \longrightarrow n$ **Term:** a + (0 + (b + c))

- → I → r applicable to term t[s] if there is substitution σ such that σ I = s
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \longrightarrow n$ Term: a + (0 + (b + c))Substitution: $\sigma = \{n \mapsto b + c\}$

- → I → r applicable to term t[s] if there is substitution σ such that σ I = s
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \longrightarrow n$ Term: a + (0 + (b + c))Substitution: $\sigma = \{n \mapsto b + c\}$ Result: a + (b + c)

Conditional Term Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

Conditional Term Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is **applicable** to term t[s] with σ if

 $\rightarrow \sigma l = s$ and

→ $\sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma " $f x = g x \land g x = f x \Longrightarrow f x = 2$ "

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma " $f x = g x \land g x = f x \Longrightarrow f x = 2$ "

simp (simp (no_asm)) (simp (no_asm_use)) (simp (no_asm_simp))

use and simplify assumptions ignore assumptions simplify, but do not use assumptions use, but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = False \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \land B & \mapsto & A, B \\ \forall x. \ A \ x & \mapsto & A \ ?x \\ A & \mapsto & A = True \end{array}$$

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\neg A \quad \mapsto \quad A = False$$

$$A \rightarrow B \quad \mapsto \quad A \Longrightarrow B$$

$$A \wedge B \quad \mapsto \quad A, B$$

$$\forall x. A x \quad \mapsto \quad A ?x$$

$$A \quad \mapsto \quad A = True$$

Example:

$$(p \longrightarrow q \land \neg r) \land s$$

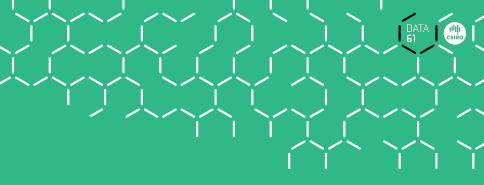
 \mapsto

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = False \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \land B & \mapsto & A, B \\ \forall x. \ A \ x & \mapsto & A \ ?x \\ A & \mapsto & A = True \end{array}$$

Example: $(p \longrightarrow q \land \neg r) \land s$ \mapsto $p \Longrightarrow q = True$ $p \Longrightarrow r = False$ s = True



P (if A then s else t) $= (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$

P (if A then s else t) = $(A \longrightarrow P s) \land (\neg A \longrightarrow P t)$ Automatic

 $P (if A then s else t) = (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$ Automatic

$$\begin{array}{l} P \ (\text{case } e \ \text{of } 0 \ \Rightarrow \ a \mid \text{Suc } n \ \Rightarrow \ b) \\ = \\ (e = 0 \longrightarrow P \ a) \land (\forall n. \ e = \text{Suc } n \longrightarrow P \ b) \end{array}$$

P (if A then s else t) = $(A \longrightarrow P s) \land (\neg A \longrightarrow P t)$ Automatic

$$P \text{ (case } e \text{ of } 0 \Rightarrow a \mid \text{Suc } n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P a) \land (\forall n. \ e = \text{Suc } n \longrightarrow P b)$$
Manually: apply (simp split: nat.split)

P (if A then s else t) = $(A \longrightarrow P s) \land (\neg A \longrightarrow P t)$ Automatic

$$P (case \ e \ of \ 0 \Rightarrow a | Suc \ n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P \ a) \land (\forall n. \ e = Suc \ n \longrightarrow P \ b)$$
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$ **Read**: to simplify $P \longrightarrow Q$

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$ **Read**: to simplify $P \longrightarrow Q$

→ first simplify P to P'

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

- **Read**: to simplify $P \longrightarrow Q$
 - \rightarrow first simplify *P* to *P'*
 - → then simplify Q to Q' using P' as assumption

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

- **Read**: to simplify $P \longrightarrow Q$
 - \rightarrow first simplify *P* to *P'*
 - → then simplify Q to Q' using P' as assumption
 - \Rightarrow the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:
if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$

(if *b* then *x* else *y*) = (if *c* then *u* else *v*)

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:
if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$

(if *b* then *x* else *y*) = (if *c* then *u* else *v*)

Prevent rewriting inside then-else (default): **if_weak_cong**: $b = c \implies$ (if b then x else y) = (if c then x else y)

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:
if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default): **if_weak_cong**: $b = c \implies$ (if b then x else y) = (if c then x else y)

→ declare own congruence rules with [cong] attribute

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:
if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default): **if_weak_cong**: $b = c \implies$ (if b then x else y) = (if c then x else y)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:
if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$

(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default): **if_weak_cong**: $b = c \implies$ (if b then x else y) = (if c then x else y)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]
- → use locally with e.g. apply (simp cong: <rule>)

Problem: $x + y \longrightarrow y + x$ does not terminate

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example:

Problem: $x + y \longrightarrow y + x$ does not terminate

- **Solution:** use permutative rules only if term becomes lexicographically smaller.
- **Example:** $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas mult_ac sort any product (*)
- **Example:** apply (simp add: add_ac) yields $(b+c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b+c)$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

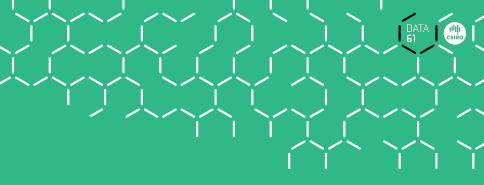
Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly



DATA 61 CSIRO

Last time: confluence in general is undecidable.

DATA 61

Last time: confluence in general is undecidable. **But:** confluence for terminating systems is decidable!

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f \xrightarrow{} a$ (2) $g \xrightarrow{} b$ (3) $f (g \xrightarrow{} z) \xrightarrow{} b$ Critical pairs:

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f \xrightarrow{} a$ (2) $g \xrightarrow{} b$ (3) $f (g \xrightarrow{} z) \xrightarrow{} b$ Critical pairs:

$$\begin{array}{cccc} (1)+(3) & \{x \mapsto g \ z\} & a \xleftarrow{(1)} & f \ (g \ z) & \xrightarrow{(3)} b \\ (3)+(2) & \{z \mapsto y\} & b \xleftarrow{(3)} & f \ (g \ y) & \xrightarrow{(2)} f \ b \end{array}$$

(1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

,

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

(1) $f \times \longrightarrow a$ (2) $g \times \longrightarrow b$ (3) $f (g \times z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

,

(1) $f \xrightarrow{} x \longrightarrow a$ (2) $g \xrightarrow{} y \longrightarrow b$ (3) $f (g \xrightarrow{} z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

,

(1)
$$f \xrightarrow{} x \longrightarrow a$$
 (2) $g \xrightarrow{} y \longrightarrow b$ (3) $f \xrightarrow{} (g \xrightarrow{} z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Example:

$$\begin{array}{ccc} (1)+(3) & \{x\mapsto g\ z\} & a\xleftarrow{(1)} & f\ (g\ z) & \xrightarrow{(3)} b \\ \text{shows that } a=b\ (\text{because } a\xleftarrow{*} b), \end{array}$$

(1)
$$f \xrightarrow{} x \longrightarrow a$$
 (2) $g \xrightarrow{} y \longrightarrow b$ (3) $f \xrightarrow{} (g \xrightarrow{} z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Example:

$$\begin{array}{cccc} (1)+(3) & \{x \mapsto g \ z\} & a \xleftarrow{(1)} & f \ (g \ z) & \xrightarrow{(3)} b \\ \text{shows that } a = b \ (\text{because } a \xleftarrow{*} b), \text{ so we add } a \longrightarrow b \text{ as a rule} \end{array}$$

(1)
$$f \xrightarrow{} x \longrightarrow a$$
 (2) $g \xrightarrow{} y \longrightarrow b$ (3) $f \xrightarrow{} (g \xrightarrow{} z) \longrightarrow b$
is not confluent

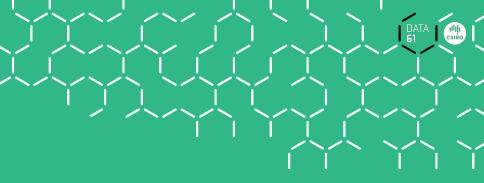
But it can be made confluent by adding rules! How: join all critical pairs

Example:

$$(1)+(3) \quad \{x \mapsto g \ z\} \quad a \stackrel{(1)}{\longleftarrow} f(g \ z) \stackrel{(3)}{\longrightarrow} b$$

shows that $a = b$ (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.



Demo: Waldmeister

Definitions:

Definitions:

A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in I.

Definitions:

A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in I.

A rewrite system is left-linear if all rules are.

Definitions:

A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in *I*. A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Definitions:

A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in I. A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Definitions:

A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in *I*. A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

➔ Conditional term rewriting

- ➔ Conditional term rewriting
- ➔ Congruence rules

- ➔ Conditional term rewriting
- ➔ Congruence rules
- → AC rules

- ➔ Conditional term rewriting
- ➔ Congruence rules
- → AC rules
- ➔ More on confluence