

data61.csiro.au

Content

→ Intro & motivation, getting started	
 → Foundations & Principles Lambda Calculus, natural deduction Higher Order Logic Term rewriting 	[1,2] [3 ^a] [4]
 → Proof & Specification Techniques Inductively defined sets, rule induction Datatypes, recursion, induction Hoare logic, proofs about programs, invariants (mid-semester break) C verification CakeML, Isar Concurrency 	[5] [6, 7] [8 ^b ,9] [10] [11 ^c] [12]

DATA

^aa1 due; ^ba2 due; ^ca3 due

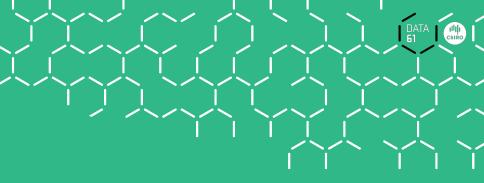
➔ Defining HOL

DATA 61

- ➔ Defining HOL
- ➔ Higher Order Abstract Syntax

- ➔ Defining HOL
- ➔ Higher Order Abstract Syntax
- ➔ Deriving proof rules

- ➔ Defining HOL
- → Higher Order Abstract Syntax
- ➔ Deriving proof rules
- ➔ More automation



Term Rewriting

The Problem

Given a set of equations

$$l_1 = r_1$$
$$l_2 = r_2$$
$$\vdots$$
$$l_n = r_n$$

The Problem

Given a set of equations

 $l_{1} = r_{1}$ $l_{2} = r_{2}$ \vdots $l_{n} = r_{n}$ does equation l = r hold?

The Problem

Given a set of equations

 $l_1 = r_1$ $l_2 = r_2$ \vdots $l_n = r_n$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → Theorem Proving (dealing with equations, simplifying statements)

Term Rewriting: The Idea

use equations as reduction rules

 $l_{1} \longrightarrow r_{1}$ $l_{2} \longrightarrow r_{2}$ \vdots $l_{n} \longrightarrow r_{n}$ decide l = r by deciding $l \xleftarrow{*} r$

$$\stackrel{0}{\longrightarrow} = \{(x,y)|x=y\}$$
 identity

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

$$\begin{array}{rcl} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & \text{ identity} \\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & n+1 \text{ fold composition} \end{array}$$

$$\begin{array}{rcl} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & \text{ identity} \\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & n+1 \text{ fold composition} \\ \stackrel{+}{\longrightarrow} & = & \bigcup_{i>0} \stackrel{i}{\longrightarrow} & \text{ transitive closure} \end{array}$$

$$\begin{array}{rcl} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & \text{if} \\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & \text{if} \\ \stackrel{+}{\longrightarrow} & = & \bigcup_{i>0} \stackrel{i}{\longrightarrow} & \text{if} \\ \stackrel{*}{\longrightarrow} & = & \stackrel{+}{\longrightarrow} \cup \stackrel{0}{\longrightarrow} & \text{if} \end{array}$$

identity n+1 fold composition transitive closure

reflexive transitive closure

$$\begin{array}{rcl} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\}\\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow\\ \stackrel{+}{\longrightarrow} & = & \bigcup_{i>0} \stackrel{i}{\longrightarrow}\\ \stackrel{*}{\longrightarrow} & = & \stackrel{+}{\longrightarrow} \cup \stackrel{0}{\longrightarrow}\\ \stackrel{=}{\longrightarrow} & = & \longrightarrow \cup \stackrel{0}{\longrightarrow} \end{array}$$

identity n+1 fold composition transitive closure reflexive transitive closure reflexive closure

$$\begin{array}{rcl} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & \text{identity} \\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & n+1 \text{ fold constraints} \\ \stackrel{+}{\longrightarrow} & = & \bigcup_{i>0} \stackrel{i}{\longrightarrow} & \text{transitive cl} \\ \stackrel{*}{\longrightarrow} & = & \stackrel{+}{\longrightarrow} \cup \stackrel{0}{\longrightarrow} & \text{reflexive transitive closes} \\ \stackrel{-1}{\longrightarrow} & = & \{(y,x)|x \longrightarrow y\} & \text{inverse} \end{array}$$

$$\xrightarrow{-1} = \{(y,x)|x \longrightarrow y\} \text{ inverse$$

osure

$$\begin{array}{rcl} \frac{0}{n+1} & = & \{(x,y)|x=y\}\\ \frac{n+1}{2} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow\\ \end{array}$$

$$\begin{array}{rcl} \stackrel{+}{\longrightarrow} & = & \stackrel{l}{\longrightarrow} \cup \stackrel{i}{\longrightarrow}\\ \stackrel{-}{\longrightarrow} & = & \stackrel{+}{\longrightarrow} \cup \stackrel{0}{\longrightarrow}\\ \stackrel{-1}{\longrightarrow} & = & \{(y,x)|x \longrightarrow y\}\\ \leftarrow & = & \stackrel{-1}{\longrightarrow} \end{array}$$

identity n+1 fold composition transitive closure reflexive transitive closure reflexive closure

$$\begin{array}{rcl} \stackrel{-1}{\longrightarrow} & = & \{(y,x)|x \longrightarrow y\} & \text{inverse} \\ \stackrel{-1}{\longrightarrow} & & \text{inverse} \end{array}$$

$$\begin{array}{rcl} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & \text{id}\\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & \text{n}\\ \stackrel{+}{\longrightarrow} & = & \stackrel{i}{\longrightarrow} \circ \stackrel{i}{\longrightarrow} & \text{td}\\ \stackrel{*}{\longrightarrow} & = & \stackrel{i}{\longrightarrow} \cup \stackrel{0}{\longrightarrow} & \text{rd}\\ \stackrel{=}{\longrightarrow} & = & \longrightarrow \cup \stackrel{0}{\longrightarrow} & \text{rd}\\ \stackrel{-1}{\longrightarrow} & = & \{(y,x)|x \longrightarrow y\} & \text{in}\\ \stackrel{\leftarrow}{\longleftarrow} & = & \stackrel{-1}{\longrightarrow} & \text{in}\\ \stackrel{\leftarrow}{\longleftrightarrow} & = & \longleftarrow \cup \longrightarrow & \text{sg}\end{array}$$

identity n+1 fold composition transitive closure reflexive transitive closure reflexive closure inverse

inverse symmetric closure

$$\begin{array}{rcl} \stackrel{0}{\longrightarrow} & = & \{(x,y)|x=y\} & \text{i} \\ \stackrel{n+1}{\longrightarrow} & = & \stackrel{n}{\longrightarrow} \circ \longrightarrow & \text{i} \\ \stackrel{+}{\longrightarrow} & = & \stackrel{l}{\longrightarrow} \circ \stackrel{i}{\longrightarrow} & \text{i} \\ \stackrel{+}{\longrightarrow} & = & \stackrel{+}{\longrightarrow} \cup \stackrel{0}{\longrightarrow} & \text{i} \\ \stackrel{-}{\longrightarrow} & = & \stackrel{-}{\longrightarrow} \cup \stackrel{0}{\longrightarrow} & \text{i} \\ \stackrel{-1}{\longrightarrow} & = & \{(y,x)|x \longrightarrow y\} & \text{i} \\ \stackrel{\leftarrow}{\longleftarrow} & = & \stackrel{-1}{\longrightarrow} & \text{i} \\ \stackrel{\leftarrow}{\longleftrightarrow} & = & \longleftarrow \cup \longrightarrow & \text{s} \\ \stackrel{+}{\longleftrightarrow} & = & \bigcup_{i>0} \stackrel{i}{\longleftrightarrow} & \text{s} \\ \stackrel{+}{\longleftrightarrow} & = & \stackrel{+}{\longleftrightarrow} \cup \stackrel{0}{\longleftrightarrow} & \text{s} \end{array}$$

identity n+1 fold composition transitive closure reflexive transitive closure reflexive closure inverse inverse symmetric closure

transitive symmetric closure

reflexive transitive symmetric closure

How to Decide $I \xleftarrow{*} r$

Same idea as for β :

Same idea as for β **:** look for *n* such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

DATA 61

Same idea as for β **:** look for *n* such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work? If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok.

161

Same idea as for β **:** look for *n* such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work? If $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $I \xleftarrow{*} r$. Ok. If $I \xleftarrow{*} r$, will there always be a suitable *n*?

Same idea as for β **:** look for *n* such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work? If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No!**

Example:

Rules: $f \ x \longrightarrow a$, $g \ x \longrightarrow b$, $f \ (g \ x) \longrightarrow b$

Same idea as for β **:** look for *n* such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work? If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No!**

Example:

Rules: $f x \longrightarrow a$, $g x \longrightarrow b$, $f (g x) \longrightarrow b$ $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \longleftarrow f (g x) \longrightarrow b \longleftarrow g x$

Same idea as for β : look for *n* such that $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work? If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No!**

Example:

Rules: $f x \longrightarrow a$, $g x \longrightarrow b$, $f (g x) \longrightarrow b$ $f x \xleftarrow{*} g x$ because $f x \longrightarrow a \xleftarrow{} f (g x) \longrightarrow b \xleftarrow{} g x$ **But:** $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Same idea as for β : look for *n* such that $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work? If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No!**

Example:

Rules: $f x \longrightarrow a$, $g x \longrightarrow b$, $f (g x) \longrightarrow b$ $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \xleftarrow{} f (g x) \longrightarrow b \xleftarrow{} g x$ **But:** $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

> Works only for systems with **Church-Rosser** property: $I \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. I \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$

Same idea as for β : look for *n* such that $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work? If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No!**

Example:

Rules: $f x \longrightarrow a$, $g x \longrightarrow b$, $f (g x) \longrightarrow b$ $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \longleftarrow f (g x) \longrightarrow b \longleftarrow g x$ **But:** $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

> Works only for systems with **Church-Rosser** property: $I \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. I \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

S

Problem:

is a given set of reduction rules confluent?

Problem:

is a given set of reduction rules confluent?

undecidable

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination \Longrightarrow confluence

Termination

- \longrightarrow is terminating if there are no infinite reduction chains
- \longrightarrow is normalizing if each element has a normal form
- \longrightarrow is convergent if it is terminating and confluent

Example:

Termination

 \longrightarrow is terminating if there are no infinite reduction chains

- \longrightarrow is normalizing if each element has a normal form
- \longrightarrow is convergent if it is terminating and confluent

Example:

 \longrightarrow_{β} in λ is not terminating, but confluent

Termination

- \longrightarrow is terminating if there are no infinite reduction chains
- \longrightarrow is normalizing if each element has a normal form
- \longrightarrow is convergent if it is terminating and confluent

Example:

- \longrightarrow_{eta} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Termination

 \longrightarrow is terminating if there are no infinite reduction chains

- \longrightarrow is normalizing if each element has a normal form
- \longrightarrow is convergent if it is terminating and confluent

Example:

 \longrightarrow_{β} in λ is not terminating, but confluent

 \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

Termination

 \longrightarrow is terminating if there are no infinite reduction chains

- \longrightarrow is normalizing if each element has a normal form
- \longrightarrow is convergent if it is terminating and confluent

Example:

 \longrightarrow_{β} in λ is not terminating, but confluent

 \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

Basic idea:

Basic idea: when each rule application makes terms simpler in some way.

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example: $f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$

This system always terminates. Reduction order:

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$$

This system always terminates. Reduction order:

 $s <_r t$ iff size(s) < size(t) with size(s) = number of function symbols in s

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$$

This system always terminates. Reduction order:

 $s <_r t$ iff size(s) < size(t) with size(s) = number of function symbols in s

1 Both rules always decrease size by 1 when applied to any term t

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > ...$)

Example:
$$f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$$

This system always terminates. Reduction order:

 $s <_r t$ iff size(s) < size(t) with size(s) = number of function symbols in s

- 1 Both rules always decrease size by 1 when applied to any term t
- $@\ <_r$ is well founded, because < is well founded on ${\rm I\!N}$

DATA 61

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t. Show

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term *t*. **Show** for each rule $l_i = r_i$, that $r_i < l_i$.

DATA 61

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term *t*. **Show** for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

g x < f (g x) and f x < g (f x)

Requires

DATA 61

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t. **Show** for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

 $g \ x < f \ (g \ x)$ and $f \ x < g \ (f \ x)$

Requires

u to become smaller whenever any subterm of u is made smaller. Formally:

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term *t*. **Show** for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

 $g \ x < f \ (g \ x)$ and $f \ x < g \ (f \ x)$

Requires

u to become smaller whenever any subterm of u is made smaller. Formally:

Requires < to be $\ensuremath{\textbf{monotonic}}$ with respect to the structure of terms:

 $s < t \longrightarrow u[s] < u[t].$

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term *t*. **Show** for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

 $g \ x < f \ (g \ x)$ and $f \ x < g \ (f \ x)$

Requires

u to become smaller whenever any subterm of u is made smaller. **Formally:**

Requires < to be $\ensuremath{\textbf{monotonic}}$ with respect to the structure of terms:

 $s < t \longrightarrow u[s] < u[t].$

True for most orders that don't treat certain parts of terms as special cases.

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

➔ Remove implications:

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

➔ Remove implications:

imp: $(A \longrightarrow B) = (\neg A \lor B)$

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

➔ Remove implications:

imp: $(A \longrightarrow B) = (\neg A \lor B)$

→ Push \neg s down past other operators:

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

➔ Remove implications:

imp: $(A \longrightarrow B) = (\neg A \lor B)$

→ Push \neg s down past other operators:

notnot: $(\neg \neg P) = P$

- **notand:** $(\neg (A \land B)) = (\neg A \lor \neg B)$
- **notor:** $(\neg (A \lor B)) = (\neg A \land \neg B)$

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

➔ Remove implications:

imp: $(A \longrightarrow B) = (\neg A \lor B)$

→ Push \neg s down past other operators:

notnot: $(\neg \neg P) = P$

notand: $(\neg (A \land B)) = (\neg A \lor \neg B)$

notor: $(\neg (A \lor B)) = (\neg A \land \neg B)$

We show that the rewrite system defined by these rules is terminating.

Each time one of our rules is applied, either:

- \rightarrow an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

Each time one of our rules is applied, either:

- → an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- → num_imps $s < \text{num}_imps t$, or
- → num_imps s =num_imps $t \land$ osize s <osize t.

Each time one of our rules is applied, either:

- ➔ an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

```
This suggests a 2-part order, <_r: s <_r t iff:
```

→ num_imps $s < \text{num}_imps t$, or

```
→ num_imps s = num_imps t \land osize s < osize t.
```

Let:

→ $s <_n t \equiv$ osize s < osize t

Then $<_i$ and $<_n$ are both well-founded orders (since both return nats).

Each time one of our rules is applied, either:

- → an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

```
This suggests a 2-part order, <_r: s <_r t iff:
```

```
→ num_imps s < \text{num}_imps t, or
```

```
→ num_imps s = num_imps t \land osize s < osize t.
```

Let:

→
$$s <_n t \equiv$$
 osize $s <$ osize t

Then $<_i$ and $<_n$ are both well-founded orders (since both return nats). $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

imp clearly decreases num_imps.

imp clearly decreases num_imps.

osize adds up all non- \neg operators and variables/constants, weights each one according to its depth within the term.

imp clearly decreases num_imps.

osize adds up all non- \neg operators and variables/constants, weights each one according to its depth within the term.

 $\begin{array}{lll} \operatorname{osize}' c & x = 2^{x} \\ \operatorname{osize}' (\neg P) & x = \operatorname{osize}' P (x+1) \\ \operatorname{osize}' (P \land Q) & x = 2^{x} + (\operatorname{osize}' P (x+1)) + (\operatorname{osize}' Q (x+1)) \\ \operatorname{osize}' (P \lor Q) & x = 2^{x} + (\operatorname{osize}' P (x+1)) + (\operatorname{osize}' Q (x+1)) \\ \operatorname{osize}' (P \longrightarrow Q) & x = 2^{x} + (\operatorname{osize}' P (x+1)) + (\operatorname{osize}' Q (x+1)) \\ \operatorname{osize} P & = \operatorname{osize}' P 0 \end{array}$

imp clearly decreases num_imps.

osize adds up all non- \neg operators and variables/constants, weights each one according to its depth within the term.

 $\begin{array}{ll} \operatorname{osize}' c & x = 2^{x} \\ \operatorname{osize}' (\neg P) & x = \operatorname{osize}' P (x+1) \\ \operatorname{osize}' (P \land Q) & x = 2^{x} + (\operatorname{osize}' P (x+1)) + (\operatorname{osize}' Q (x+1)) \\ \operatorname{osize}' (P \lor Q) & x = 2^{x} + (\operatorname{osize}' P (x+1)) + (\operatorname{osize}' Q (x+1)) \\ \operatorname{osize}' (P \longrightarrow Q) & x = 2^{x} + (\operatorname{osize}' P (x+1)) + (\operatorname{osize}' Q (x+1)) \\ \operatorname{osize}' P & = \operatorname{osize}' P 0 \end{array}$

The other rules decrease the depth of the things osize counts, so decrease osize.

Term rewriting engine in Isabelle is called Simplifier

Term rewriting engine in Isabelle is called Simplifier

apply simp

➔ uses simplification rules

Term rewriting engine in Isabelle is called Simplifier

apply simp

- ➔ uses simplification rules
- \rightarrow (almost) blindly from left to right

Term rewriting engine in Isabelle is called Simplifier

apply simp

- ➔ uses simplification rules
- \rightarrow (almost) blindly from left to right
- → until no rule is applicable.

Term rewriting engine in Isabelle is called Simplifier

apply simp

- ➔ uses simplification rules
- \rightarrow (almost) blindly from left to right
- → until no rule is applicable.

termination: not guaranteed (may loop)

Term rewriting engine in Isabelle is called Simplifier

apply simp

- ➔ uses simplification rules
- \rightarrow (almost) blindly from left to right
- → until no rule is applicable.
 - termination: not guaranteed (may loop)
 - confluence: not guaranteed (result may depend on which rule is used first)

Control

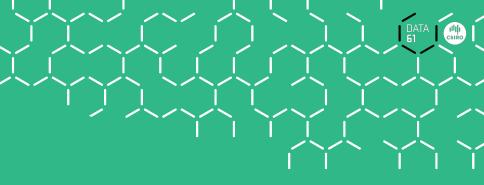
→ Equations turned into simplification rules with [simp] attribute

Control

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)

Control

- \rightarrow Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
- → Using only the specified set of equations: apply (simp only: <rules>)



Demo

➔ Equations and Term Rewriting

➔ Equations and Term Rewriting

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

→ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.