

Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka S2/2018

data61.csiro.au

DATA

6

λ

Last time...

- $\rightarrow \lambda$ calculus syntax
- \rightarrow free variables, substitution
- \rightarrow *β* reduction
- $\rightarrow \alpha$ and η conversion
- \rightarrow β reduction is confluent
- $\rightarrow \lambda$ calculus is expressive (Turing complete)
- $\rightarrow \lambda$ calculus is inconsistent (as a logic)

Content

I DATA **I**

 a a1 due; b a2 due; c a3 due

λ calculus is inconsistent

Can find term R such that $R R =_{\beta} \text{not}(R R)$

There are more terms that do not make sense: 1 2, true false, etc.

> Solution: rule out ill-formed terms by using types. (Church 1940)

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

- \rightarrow for term t has type α write t:: α
- \rightarrow if x has type α then $\lambda x. x$ is a function from α to α Write: $(\lambda x. x) :: \alpha \Rightarrow \alpha$
- \rightarrow for s t to be sensible: s must be a function t must be right type for parameter

If
$$
s :: \alpha \Rightarrow \beta
$$
 and $t :: \alpha$ then $(s t) :: \beta$

That's about it

Now formally again

Syntax for λ^{\rightarrow}

Terms:
$$
t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)
$$

 $v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$

Types: τ ::= b | ν | $\tau \Rightarrow \tau$ $b \in \{bool, int, ...\}$ base types $\nu \in {\alpha, \beta, \ldots}$ type variables

$$
\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)
$$

Context Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context $\Gamma: \Gamma \vdash t :: \tau$

Examples

$$
\begin{aligned}\n\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha \\
[y \leftarrow \text{int}] \vdash y :: \text{int} \\
[z \leftarrow \text{bool}] \vdash (\lambda y. \ y) \ z :: \text{bool} \\
[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta\n\end{aligned}
$$

A term t is well typed or type correct if there are Γ and τ such that $\Gamma \vdash t :: \tau$

Type Checking Rules

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Example Type Derivation:

$$
\frac{\boxed{x \leftarrow \alpha, y \leftarrow \beta \mid x :: \alpha}}{\boxed{x \leftarrow \alpha \mid \vdash \lambda y. x :: \beta \Rightarrow \alpha}}
$$
\n
$$
\boxed{\boxed{\text{I} \vdash \lambda x \text{ } y. x :: \alpha \Rightarrow \beta \Rightarrow \alpha}}
$$

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

More complex Example

$$
\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]
$$

12 | COMP4161 | (C) Data61, CSIRO: provided under Creative Commons Attribution License

More general Types

A term can have more than one type.

Example:
$$
[] \vdash \lambda x. x :: \text{bool} \Rightarrow \text{bool}
$$
 $[] \vdash \lambda x. x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

 $\tau \lesssim \sigma$ if there is a substitution S such that $\tau = S(\sigma)$

Examples:

$$
\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad \not\lesssim \quad \alpha \Rightarrow \alpha
$$

Most general Types

Fact: each type correct term has a most general type

Formally:

 $\begin{array}{rcl} \mathsf{F}\vdash t::\tau & \Longrightarrow & \exists\sigma.\ \mathsf{F}\vdash t::\sigma\wedge (\forall\sigma'.\ \mathsf{F}\vdash t::\sigma'\Longrightarrow\sigma'\lesssim\sigma) \end{array}$

It can be found by executing the typing rules backwards.

- \rightarrow type checking: checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- \rightarrow type inference: computing Γ and τ such that $\Gamma \vdash t :: \tau$

Type checking and type inference on λ^{\rightarrow} are decidable.

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \longrightarrow_\beta t \Longrightarrow \Gamma \vdash t :: \tau$

This property is called subject reduction

What about termination?

β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

 \rightarrow = β is decidable

To decide if $s =_\beta t$, reduce s and t to normal form (always exists, because \longrightarrow _β terminates), and compare result.

 \rightarrow $=$ _{$\alpha\beta\eta$} is decidable This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

What does this mean for Expressiveness?

Not all computable functions can be expressed in λ^{-1} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using Y :: $(\tau \Rightarrow \tau) \Rightarrow \tau$ with Y $t \rightarrow_{\beta} t$ (Y t) as only constant.

- \rightarrow Y is called fix point operator
- \rightarrow used for recursion
- \rightarrow lose decidability (what does Y (λx . x) reduce to?)
- \rightarrow (Isabelle/HOL doesn't have Y; it supports more restricted forms of recursion)

Types and Terms in Isabelle

$$
\begin{array}{c}\n\begin{bmatrix}\n\text{DATA} \\
\text{GI}\n\end{bmatrix} \\
\vdots \\
\begin{bmatrix}\n\text{DATA} \\
\text{SI}\n\end{bmatrix} K\n\end{array}
$$

Types: τ ::= b | $'\nu$ | $'\nu$:: C | $\tau \Rightarrow \tau$ | (τ, \ldots, τ) K $b \in \{bool, int, ...\}$ base types $\nu \in {\alpha, \beta, \ldots}$ type variables $K \in \{ \text{set}, \text{list}, \ldots \}$ type constructors $C \in \{order, linord, \ldots\}$ type classes

Terms:
$$
t ::= v \mid c \mid ?v \mid (t \ t) \mid (\lambda x. t)
$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

- \rightarrow type constructors: construct a new type out of a parameter type. Example: int list
- \rightarrow type classes: restrict type variables to a class defined by axioms. Example: α :: order
- \rightarrow schematic variables: variables that can be instantiated.

Type Classes

- \rightarrow similar to Haskell's type classes, but with semantic properties class order $=$ assumes order_refl: " $x < x$ " assumes order_trans: " $\llbracket x \lt y; y \lt z \rrbracket \Longrightarrow x \lt z$ " . . .
- \rightarrow theorems can be proved in the abstract

lemma order less trans:

 $\forall x ::'a :: order. \; [x < y; y < z] \Longrightarrow x < z"$

 \rightarrow can be used for subtyping class linorder $=$ order $+$ assumes linorder_linear: " $x < y \vee y < x$ "

 \rightarrow can be instantiated

instance nat :: " {order, linorder}" **by** ...

Schematic Variables

X Y $X \wedge Y$

 \rightarrow X and Y must be instantiated to apply the rule

But: lemma " $x + 0 = 0 + x$ "

- \rightarrow x is free
- \rightarrow convention: lemma must be true for all x
- \rightarrow during the proof, x must not be instantiated

Solution:

Isabelle has free (x) , bound (x) , and schematic $(?X)$ variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

Higher Order: schematic variables can be functions.

Higher Order Unification

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- \rightarrow Higher Order Unification has possibly infinitely many solutions

But:

- **→** Most cases are well-behaved
- **→** Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- \rightarrow each occurrence of a schematic variable is of the form ?f $t_1 \ldots t_n$
- \rightarrow and the t_1 ... t_n are η -convertible into *n* distinct bound variables

We have learned so far...

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow *β*-reduction in λ ^{\rightarrow} satisfies subject reduction
- \rightarrow *β*-reduction in λ ^{\rightarrow} always terminates
- \rightarrow Types and terms in Isabelle