| | | |
N NS SN\

S\ /\/ﬁ/ﬁ/w W
\/ ~ /\I/ I/\I \I/\

N N~ 7

COMP4161: Advanced Topics in Software Verification | | |
v 7

P ’ ’ Q N-oNs

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka e

52/2017
data6l.csiro.au %

Content D a7
y %

=» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction [1,2]
e Higher Order Logic [37]
e Term rewriting [4]

=» Proof & Specification Techniques

o Inductively defined sets, rule induction [5]
e Datatypes, recursion, induction [6, 7]
e Hoare logic, proofs about programs, invariants [8%,9]
o (mid-semester break)

o C verification [10]
o CakeML, Isar [119]
e Concurrency [12]

221 due; a2 due; a3 due

2 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

- L L] /
Program verification so far =y %
b1
N~

If the following true?

{x=0}

y =X
X =x+1;
{x=1Ay =0}

3 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

- L L] /
Program verification so far =y %
b1
N~

If the following true?

{x=0}

y =X
X =x+1;
{x=1Ay =0}

YES!

3 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

Is it still true?

{x=0}

y =X || x:=4
x =x+1;
{x=1Ay =0}

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

Is it still true?

{x=0}

y =X || x:=4
x =x+1;

{x=1Ay =0}

NO!

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

So far we have assumed sequential execution

{x =0}

y =X
xX:=x+1;
{x=1Ay =0}

i.e. a single thread of execution accessing the memory state

Program

CPU

Memory
var — val

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

So far we have assumed sequential execution

{x =0} x—=0 y——
y =X x—0 y—20
X =x-+1; x—1 y—20
{x=1Ay =0}

i.e. a single thread of execution accessing the memory state

Program

CPU

Memory
var — val

5 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

So far we have assumed sequential execution

{x =0} x—=0 y——
y =X x—0 y—20
xX:=x+1; x—1 y—20
{x=1Ay =0}

i.e. a single thread of execution accessing the memory state

Program

CPU

Memory
var — val

This is not always the case!

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency D a1
@

Multithreading Multicore Distributed
Proga Progg Proga Progs Proga Progg
. — — ...
CPU CPU CPU CPU CPU
Memory Memory Memory | | Memory

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency D a1
@

Multithreading Multicore Distributed
Proga Progg Proga Progs Proga Progg
. — — ...
CPU CPU CPU CPU CPU
Memory Memory Memory | | Memory

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing

6 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency D a1
@

Multithreading Multicore Distributed
Proga Progg Proga Progs Proga Progg
. — — ...
CPU CPU CPU CPU CPU
Memory Memory Memory | | Memory

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing
Interleaved execution Parallel execution

6 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency D a1
@

Multithreading Multicore Distributed
Proga Progg Proga Progs Proga Progg
. — — ...
CPU CPU CPU CPU CPU
Memory Memory Memory | | Memory

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing
Interleaved execution Parallel execution

Here: we'll look at shared-memory concurrency

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Types of concurrency D a1
@

Multithreading Multicore Distributed
Proga Progg Proga Progs Proga Progg
. — — ...
CPU CPU CPU CPU CPU
Memory Memory Memory | | Memory

All need communication and synchronisation mechanisms

Shared memory Shared memory Message passing
Interleaved execution Parallel execution

Here: we'll look at shared-memory concurrency

(and we'll ignore further complications such as caches, weak memory...)

6 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Goal IJATA | %

We want to be able to reason about parallel composition of programs.

Proga Progg

I -

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Goal IJATA | %

We want to be able to reason about parallel composition of programs.

{precondition}

Proga Progg
I -

{postcondition}

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Goal EIATA | %

We want to be able to reason about parallel composition of programs.

{precondition}

Proga Progg

I -

{postcondition}

2 kinds of properties:

Safety: Liveness:
“something bad does not happen” “something good must happen”
(no bad state can be reached) (specific states must be reached)

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Goal EIATA | %

We want to be able to reason about parallel composition of programs.

{precondition}
Proga Progg
I -
{postcondition}
2 kinds of properties:
Safety: Liveness:
“something bad does not happen” “something good must happen”
(no bad state can be reached) (specific states must be reached)
eg. {x=0} e.g. the program terminates

7 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Goal EIATA | %

We want to be able to reason about parallel composition of programs.

{precondition}
Proga Progg
I -
{postcondition}
2 kinds of properties:
Safety: Liveness:
“something bad does not happen” “something good must happen”
(no bad state can be reached) (specific states must be reached)
eg. {x=0} e.g. the program terminates

With concurrency: much harder!
(set of reachable states much bigger)

7 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Goal DATA | %

We want to be able to reason about parallel composition of programs.

{precondition}
Proga Progg
I -
{postcondition}
2 kinds of properties:
Safety: Liveness:
“something bad does not happen” “something good must happen”
(no bad state can be reached) (specific states must be reached)
eg. {x=0} e.g. the program terminates
With concurrency: much harder! With concurrency: new problems!
(set of reachable states much bigger) (dead-locks, live-locks...)

7 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Goal EIATA | %

We want to be able to reason about parallel composition of programs

{precondition}

Proga Progg
[l S

{postcondition}

Here:
=» We focus on safety properties: postcondition holds if reached

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Goal EIATA | %

We want to be able to reason about parallel composition of programs

{precondition}

Proga Progg
[l S

{postcondition}

Here:
=» We focus on safety properties: postcondition holds if reached
=» We will define parallel composition (||) as non-deterministic interleaving

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Goal EIATA | %

We want to be able to reason about parallel composition of programs

{precondition}

Proga Progg

I ——

{postcondition}

Here:
=» We focus on safety properties: postcondition holds if reached
=» We will define parallel composition (||) as non-deterministic interleaving
=» We go back to our minimal IMP language (forget about C and monads)

datatype com = SKIP
Assign vname aexp

_ ::,)

it CTHEN _ ELSE)
WHILE _ DO _ OD)

Semi com com
Cond bexp com com
While bexp com

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

If the following true?

{x=0}

y =X
X =x-+1;
{x=1Ay =0}

YES!

9 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

Is it still true?

{x=0}

y =X || x:=4
x =x+1;

{x=1Ay =0}

NO!

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

Is it still true?

{x=0}

y =X | x:=4
xX:=x+1;

{x=1Ay =0}

NO!

What is going wrong?
What do we need to change?

=» to make sure we don't prove wrong statements!
=» to allow us to prove true statements about concurrent programs

10 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

How would we have proved this?

{x=0}

y =X
x:=x++1;
{x=1Ay =0}

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

How would we have proved this? Using Hoare logic rulesl

{x=0}

y =X
x:=x++1;
{x=1Ay =0}

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

- L L] /
Program verification so far =y %
b1
N~

How would we have proved this? Using Hoare logic rules!

o - {PYa{R) - (R} @ (@)
x::x’+1; FA{P} aa {Q}
x=1/ny=0} Pk o e} x—e (P

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

- L L] /
Program verification so far =y %
b1
N~

How would we have proved this? Using Hoare logic rules!

bx=0j F{P} a (R} + {R} < {Q}
y=x;{x+1=1Ay =0} :
x:=x+1; FA{P} aa {Q}
x=1ny=0} Pk o e} x—e (P

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

- L L] /
Program verification so far =y %
b1
N~

How would we have proved this? Using Hoare logic rules!

{x=0} ={x+1=1Ax=0} (PYa (R} + (R} o {(Q)
y=x;{x+1=1Ay =0} :
x:=x+1 FA{P} aa {Q}

{x=1ny=0} F {Plx—e]} x:=e {P}

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

How would we have proved this? Using Hoare logic rules!

{X:O} :>{X+1:1/\X:0} |—{P}C1{R} "{R}Cz{Q}
y=x;{x+1=1Ay=0} :
x:=x+1; FA{P} aice {Q}

{x=1ny=0} F {Plx—e]} x:=e {P}

Why does this make it true? What does it mean that it’s true?
It means:

If the program "y := x; x := x+ 1" is executed from a state satisfying

{x =0} then, if it terminates, the resulting state satisfied {x =1 Ay = 0}

11 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

How would we have proved this? Using Hoare logic rulesl

{x=0} ={x+1=1Ax=0} (PYa (R} + (R} o {(Q)
y=x;{x+1=1Ay=0} :
X :=x+1 F{P} aa {Q}

x=1Ay=0} - {Plx—el} xi=e {P}

Why does this make it true? What does it mean that it’s true?
It means:
{(yi=x; x:=x+1lo)y—=0 AN x0=0 — xo =1Ayoc =0

12 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

How would we have proved this? Using Hoare logic rulesl

{x=0} ={x+1=1Ax=0} (PYa (R} + (R} o {(Q)
y=x;{x+1=1Ay=0} :
X :=x+1 F{P} aa {Q}

x=1Ay=0} - {Plx—el} xi=e {P}

Why does this make it true? What does it mean that it’s true?

[t means:
{(yi=x; x:=x+1lo)y—=0 AN x0=0 — xo =1Ayoc =0
Where: , , .

(c1,0) 20" (o,0') 20 eg=v

(cr; 2,0) = o (x :=e,0) = o[x — V]

12 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

How would we have proved this? Using Hoare logic rulesl

{XZO} :>{X+1:1/\X:O} F {P}c {R F {R} o
y=x;{x+1=1Ay =0} { g {P{} }CI;C2{ {}Q} @

X =x+1;
x=1Ay=0} - {Plx—el} xi=e {P}
Why does this make it true? What does it mean that it’s true?
It means:
{yi=x; x:=x+10)—=0c AN xo0=0 — xo' =1Ayoc' =0
Where:
{cr,0) = 0" {c,0) = 0" eo—v

(cr; 2,0) = o (x :=e,0) = o[x — V]

Soundness: F {P} c {Q} = VYo ¢'. (c,0) 20’ APo — Q o’

12 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification so far DATA | %

How would we have proved this? Using Hoare logic rulesl

{XZO} :>{X+1:1/\X:O} F {P}c {R F {R} o
y=x;{x+1=1Ay =0} { g {P{} }CI;C2{ {}Q} @

X =x+1;
x=1Ay=0} - {Plx—el} xi=e {P}
Why does this make it true? What does it mean that it’s true?
It means:
{yi=x; x:=x+10)—=0c AN xo0=0 — xo' =1Ayoc' =0
Where:
{cr,0) = 0" {c,0) = 0" eo—v

(a;c,0) = d” (x:=e,0) = o[x = V]
Soundness: F {P} c {Q} = VYo ¢'. (c,0) 20’ APo — Q o’

What changes when we have another program running in parallel?

12 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

{x=0}

y=x XFI=4y=0] | x=4

x:=x+1
{x=1Ay =0}

13 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

{x=0}

y::x;m [x:=4
x:=x-+1;
{x=1Ay =0}

=» Execution is interleaved

13 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

{x=0}

y::x;m | x:=4

x:=x-+1;
{x=1Ay =0}

=» Execution is interleaved
=» Intermediate assertions can be interferred with

13 | COMP4161 | © Data6l, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

{x=0}

y::X;M | x:=4

x:=x-+1;
{x=1Ay =0}

=» Execution is interleaved
=» Intermediate assertions can be interferred with

=» Need a new reasoning framework!

13 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

{x=0}

y::X;M | x:=4

x:=x-+1;
{x=1Ay =0}

=» Execution is interleaved
=» Intermediate assertions can be interferred with

=» Need a new reasoning framework!

=>» New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

13 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

{x=0}

y::X;M | x:=4
x:=x-+1;

{x=1Ay =0}

Execution is interleaved
Intermediate assertions can be interferred with

Need a new reasoning framework!
New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

+i i

(1969: Hoare Logic (Tony Hoare))
1976: Owicki-Gries (Susan Owicki and David Gries)
1981: Rely-Guarantee (Cliff Jones)

LA AR A

13 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Program verification with concurrency DATA | %

{x=0}

y::X;M | x:=4

x:=x-+1;
{x=1Ay =0}

Execution is interleaved
Intermediate assertions can be interferred with

Need a new reasoning framework!

+i i

New syntax, new semantics,
new proof rules (proved sound w.r.t semantics), new VCG

(1969: Hoare Logic (Tony Hoare))
1976: Owicki-Gries (Susan Owicki and David Gries)
1981: Rely-Guarantee (Cliff Jones)

LA AR A

OG+RG formalised in Isabelle/HOL by Leonor Prensa Nieto, 2002

13 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

Intuition:

e Syntax: our IMP language + Parallel operator + Await operator
e Semantics:

» P || Q: pick one program and execute its current instruction
» AWAIT b DO c OD: if guard is true execute c atomically

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

Intuition:

e Syntax: our IMP language + Parallel operator + Await operator
e Semantics:

» P || Q: pick one program and execute its current instruction
» AWAIT b DO c OD: if guard is true execute c atomically

o Proof rules:

> you prove local correctness (as before)
> your prove interference-freedom (assertions not interfered with)

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

Intuition:
e Syntax: our IMP language + Parallel operator + Await operator
e Semantics:

» P || Q: pick one program and execute its current instruction
» AWAIT b DO c OD: if guard is true execute c atomically

e Proof rules:
> you prove local correctness (as before)
> your prove interference-freedom (assertions not interfered with)

{is_even x}
x:=x+1;
x:=x++1;
{is_even x}

X:i=x+2

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

Intuition:
e Syntax: our IMP language + Parallel operator + Await operator
e Semantics:
» P || Q: pick one program and execute its current instruction
» AWAIT b DO c OD: if guard is true execute c atomically
e Proof rules:

> you prove local correctness (as before)
> your prove interference-freedom (assertions not interfered with)

{is_even x}
x:=x+1; {is_even x + 1}
x:=x++1;
{is_even x}

X:i=x+2

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

Intuition:

e Syntax: our IMP language + Parallel operator + Await operator
e Semantics:

» P || Q: pick one program and execute its current instruction

» AWAIT b DO c OD: if guard is true execute c atomically
e Proof rules:

> you prove local correctness (as before)
> your prove interference-freedom (assertions not interfered with)

{is_even x}
x:=x+1; {is_even x + 1}
x:=x++1;
{is_even x}

X:i=x+2

=» Needs a fully annotated program!
- Needs a “small-step semantics” (c,o) — (c’,o’)
(before big-step: (c,o) — o)

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

Formally:
e Syntax: our IMP language + Parallel operator + Await operator
e Semantics:
(c1,0) = (c1,0%) (c2,0) = (6, 0")
(allez, o) = (cille2,0") (alle, o) = (allg, o)

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

Formally:
e Syntax: our IMP language + Parallel operator + Await operator
e Semantics:
{a,0) = {q,0") (@2,0) = {g,0")
(alle,0) = (alle, o) (alle,0) = (alle, o)

o Hoare rules:

{P1} aa {@1} {P2} 2 {Q.} interfree c1 ¢, interfree ¢ 1
{P1 A P2} cllea {Q1 A Qa2}

15 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

Formally:
e Syntax: our IMP language + Parallel operator + Await operator
e Semantics:
{a,0) = {q,0") (@2,0) = {g,0")
(alle,0) = (alle, o) (alle,0) = (alle, o)

o Hoare rules:

{P1} aa {@1} {P2} 2 {Q.} interfree c1 ¢, interfree ¢ 1
{P1 A P2} cllea {Q1 A Qa2}

Where
interfree ¢ ¢ =
Vp € (assertions c1). ¥(a, ¢) € (atomics). {p A a}c{p}

15 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

=» Quadratic explosion of proof obligations! (verification conditions)
=» Not compositional
=> Not complete: sometimes need auxilliary/ghost variables

16 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

=» Quadratic explosion of proof obligations! (verification conditions)
=» Not compositional
=> Not complete: sometimes need auxilliary/ghost variables

{x=0}
x:=x-+1; || x:=x+1

{x=2}

16 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

=» Quadratic explosion of proof obligations! (verification conditions)
=» Not compositional
=> Not complete: sometimes need auxilliary/ghost variables

{x=0}
x:=x-+1; || x:=x+1

{x=2}

{x=0Aa=0Aa =0}
<x:=x4+1,a1:=1> || <x=x+4+1la=1>

fx=2}

16 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Owicki-Gries framework DATA | %

=» Quadratic explosion of proof obligations! (verification conditions)
=» Not compositional
=> Not complete: sometimes need auxilliary/ghost variables

{x=0}
x:=x-+1; || x:=x+1

{x=2}

{XZO/\31:0/\32:0}
{a2=0Ax=0V aa=1Ax=1} || {a1=0Ax=0V ag=1Ax=1}
<x=x4+laa=1>|<x=x+1la=1>
{a2=0Ax=1V aa=1Ax=2} ||[{a1=1Ax=1V ag=1Ax=2}

x=2}

16 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Rely-Guarantee? DATA | @

Intuition:

o Syntax, semantics: as before (but no need for assertions)
o Proof rules:

» each program is specified in isolation, assuming a behavior of the
“environment” (other programs in parallel)

18 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee? DATA | @

Intuition:

o Syntax, semantics: as before (but no need for assertions)
o Proof rules:

» each program is specified in isolation, assuming a behavior of the
“environment” (other programs in parallel)
> each program has: precondition, postcondition, rely and guarantee

C
{Pa Ra Ga Q} H {P/7RI7G/7QI}

18 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee? []ATA | @

Intuition:

o Syntax, semantics: as before (but no need for assertions)
o Proof rules:

» each program is specified in isolation, assuming a behavior of the
“environment” (other programs in parallel)

> each program has: precondition, postcondition, rely and guarantee

> rely and guarantee are relations between 2 states

C
{Pa Ra Ga Q} H {P/5R17G/7Ql}

18 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee?

DATA | %

Intuition:

o Syntax, semantics: as before (but no need for assertions)
e Proof rules:
» each program is specified in isolation, assuming a behavior of the
“environment” (other programs in parallel)
> each program has: precondition, postcondition, rely and guarantee
> rely and guarantee are relations between 2 states
> rely expresses the maximum behavior of the environment (the
interference that the program can tolerate)

C
{Pa Ra Ga Q} H {P/5R17G/7Ql}

18 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee? []ATA | @

Intuition:

o Syntax, semantics: as before (but no need for assertions)
e Proof rules:
» each program is specified in isolation, assuming a behavior of the
“environment” (other programs in parallel)
> each program has: precondition, postcondition, rely and guarantee
> rely and guarantee are relations between 2 states
> rely expresses the maximum behavior of the environment (the
interference that the program can tolerate)
> guarantee expresses a maximum behavior promised to the
environment

C
{Pa Ra Ga Q} H {P/5R17G/7Ql}

18 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee? []ATA | @

Intuition:

o Syntax, semantics: as before (but no need for assertions)
e Proof rules:
» each program is specified in isolation, assuming a behavior of the
“environment” (other programs in parallel)
> each program has: precondition, postcondition, rely and guarantee
> rely and guarantee are relations between 2 states
> rely expresses the maximum behavior of the environment (the
interference that the program can tolerate)
> guarantee expresses a maximum behavior promised to the
environment

c '
{Pa Ra Ga Q} H {P/5R17G/7Ql}

c c c c

’ ’
op — 01 — 02 i) o3 — 04 i) 05 — Og _c) o7
P R R R Q

18 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee? DATA | @

Formally:

o Syntax, semantics: as before (but no need for assertions)
o Proof rules (examples):

19 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee? DATA | @

Formally:
o Syntax, semantics: as before (but no need for assertions)
o Proof rules (examples):

PC{s.fseQ} {(s,t). PsA(t=FfsVt=s)} CG stable PR stable Q R
Basic f{P,R, G, Q}

Where stable PR = Y o ¢'. (Po A R(o,0")) — Po’
(doing an environment step before or after P should not make P invalid)

19 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Rely-Guarantee? []ATA | @

Formally:
o Syntax, semantics: as before (but no need for assertions)
e Proof rules (examples):

PC{s.fseQ} {(s,t). PsA(t=FfsVt=s)} CG stable PR stable Q R
Basic f{P,R, G, Q}

c{P1,R1,G1,Q1} 2{P2,R,G,Q} GGCR GCR
clle{PiN P, RINR, G1U G2, @1 N @2}

Where stable PR = Y o ¢'. (Po A R(o,0")) — Po’
(doing an environment step before or after P should not make P invalid)

Intuition: the guarantee of one program is the rely of the other program

19 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

We have seen today ... DATA | %

=» Need for new reasoning framework for parallel/concurrent programs
=>» Owicki-Gries
=» Rely-Guarantee

21 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

