| | | |
N NS SN\

S\ /\/ﬁ/ﬁ/w W
\/ ~ NS N NN

S I
COMP4161: Advanced Topics in Software Verification
P N NS

7~ 7

based on slides by J. Blanchette, L. Bulwahn and T. I I
ipkow . . o
ee?rwm Klein, June Andronick, Ramana Kumar, Miki Tanaka 7N

52/2017
databl.csiro.au %

Content DATA
) %

=» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction [1,2]
o Higher Order Logic [37]
e Term rewriting [4]

=» Proof & Specification Techniques

e Inductively defined sets, rule induction [5]
e Datatypes, recursion, induction [6, 7]
e Hoare logic, proofs about programs, C verification [8°,9]
o (mid-semester break)

e Writing Automated Proof Methods [10]
o lsar, codegen, typeclasses, locales [11°,12]

23l due; Pa2 due; a3 due

2 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Overview DATA | P

Automatic Proof and Disproof

=» Sledgehammer: automatic proofs
=>» Quickcheck: counter example by testing
=>» Nipick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias
Nipkow (TUM).

3 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Automation I{ATA D
b1
~N~-

Dramatic improvements in fully automated proofs in the last 2
decades.

=» First-order logic (ATP): Otter, Vampire, E, SPASS
=» Propositional logic (SAT): MiniSAT, Chaff, RSat
=» SAT modulo theory (SMT): CVC3, Yices, Z3

The key:

Efficient reasoning engines, and restricted logics.

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Automation in Isabelle DATAI®

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto),
arithmetic

2000s embrace external tools, but don't trust
them (ATP/SMT/SAT)

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Sledgehammer DATA | P

Sledgehammer:

=» Connects Isabelle with ATPs and SMT solvers:
E, SPASS, Vampire, CVC3, Yices, Z3

=» Simple invocation:
=» Users don't need to select or know facts
=» or ensure the problem is first-order
=» or know anything about the automated prover

=» Exploits local parallelism and remote servers

6 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Sledgehammer Architecture DATA | @

(Sledgehammer)
! !

‘ Relevance filter | Relevance filter

SPASS jjVampire

P a q Metis Metis Metis
M;t :)sf Mre:;sf M::")sf or SMT or SMT or SMT
P P P proof proof proof

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Fact Selection DATA
@

Provers perform poorly if given 1000s of facts.

=» Best number of facts depends on the prover

=» Need to take care which facts we give them

=» Idea: order facts by relevance, give top n to prover

(n = 250,1000,...)

Meng & Paulson method: lightweight, symbol-based filter
Machine learning method:

look at previous proofs to get a probability of relevance

4 4

9 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

From HOL to FOL DATAI®

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

=» First-order:
=» SK combinators, A-lifting
=» Explicit function application operator

=» Encode types:
=» Monomorphise (generate multiple instances), or
=» Encode polymorphism on term level

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Reconstruction DATA | %

We don’t want to trust the external provers.
Need to check/reconstruct proof.

=» Re-find using Metis
Usually fast and reliable (sometimes too slow)

=» Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

=» Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

=» Recast into structured Isar proof
Fast, experimental.

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Judgement Day DATA | @

Evaluating Sledgehammer:

-
-

-

1240 goals out of 7 existing theories.
How many can sledgehammer solve?

2010: E, SPASS, Vampire (for 5-120s). 46%
ESV x5s~ V x 120s

2011: Add E-SInE, CVC2, Yices, Z3 (305).
73>V

2012: Better integration with SPASS. 64%
SPASS best (small margin)

2013: Machine learning for fact selection. 69%
Improves a few percent across provers.

12 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Evaluation D oA
@

2010
3 ATPs x 30s

46%

13 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Evaluation D oA
@

2010
3 ATPs x 30s 3ATPsx30s
nontrivial goals
0,
46% 4%

14 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Evaluation DATA
@

2010
3 ATPs x 30s 3ATPsx30s
nontrivial goals
46% 4%
2012

(4 ATPs + 3 SMTs) x 30s (4 ATPs + 3 SMTs) x 30s
nontrivial goals

64% 0%

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attributi

Sledgehammer rules! DATA | @

Example application:

=>» Large Isabelle/HOL repository of algebras for modelling
imperative programs
(Kleene Algebra, Hoare logic, ..., ~ 1000 lemmas)

=>» Intricate refinement and termination theorems

=» Sledgehammer and Z3 automate algebraic proofs at
textbook level.

"The integration of ATP, SMT, and Nitpick is
for our purposes very very helpful.” — G. Struth

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Theorem proving and testing DATA | %

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute
conjectures!

Sad facts of life:
=» Most lemma statements are wrong the first time.
=» Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

18 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Quickcheck DATA | P

Lightweight validation by testing.

=» Motivated by Haskell’s QuickCheck
=» Uses Isabelle’s code generator
=» Fast

=* Runs in background, proves you wrong as you type.

19 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Quickcheck DATA | P

Covers a number of testing approaches:

=» Random and exhausting testing.
=» Smart test data generators.
=> Narrowing-based (symbolic) testing.

Creates test data generators automatically.

20 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Test generators for datatypes DATA | @

Fast iteration in continuation-passing-style

datatype « list = Nil | Cons « (« list)

Test function:

testy ise P = P Nil andalso test, (Ax. test, jist (Axs. P (Cons x

xs)))

22 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Test generators for predicates DATA | @

distinct xs = distinct (removel x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinct,, s+ P = P Nil andalso
test, (Ax. test-distinct, jist (if x ¢ xs then (Axs. P (Cons
x xs)) else True))

Use data flow analysis to figure out which variables
must be computed and which generated.

23 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Narrowing DATA | @

Symbolic execution with demand-driven refinement
=» Test cases can contain variables

=» [f execution cannot proceed: instantiate with further
symbolic terms

Pays off if large search spaces can be discarded:
distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.

24 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Quickcheck Limitations DATA | %

Only executable specifications!

=» No equality on functions with infinite domain

=» No axiomatic specifications

25 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Nitpick EIATA | %

Finite model finder

=» Based on SAT via Kodkod (backend of Alloy prover)
=» Soundly approximates infinite types

27 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Nitpick Successes DATA
@

=» Algebraic methods
=*» C++ memory model
=» Found soundness bugs in TPS and LEO-II

Fan mail:
"Last night | got stuck on a goal | was sure was a
theorem. After 5-10 minutes | gave Nitpick a try, and
within a few secs it had found a splendid
counterexample—despite the mess of locales and type
classes in the context!”

28 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

We have seen today ... DATA | %

=>» Proof: Sledgehammer
=» Counter examples: Quickcheck
=» Counter examples: Nitpick

30 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

