| | | |
N NS SN\

S\ /\/ﬁ/ﬁ/w W
\/ ~ /\I/ I/\I \I/\

COMP4161: Advanced Topics in Software Verification N N~ 7~

“ 7

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka e

52/2017
data6l.csiro.au %

Content DATA
I %

=» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction [1,2]
e Higher Order Logic [37]
o Term rewriting [4]

=» Proof & Specification Techniques

o Inductively defined sets, rule induction [5]
o Datatypes, recursion, induction [6, 7]
e Hoare logic, proofs about programs, C verification [82,9]
o (mid-semester break)

e Writing Automated Proof Methods [10]
e |sar, codegen, typeclasses, locales [11¢,12]

23l due; Pa2 due; a3 due

2 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Last Time DATA
@

=» Sets

3 | COMP4161 | Data61, CSIRO: provided under Creative Commons Attribution License

Last Time DATA
@

=» Sets
=» Type Definitions

3 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Last Time DATA
@

-» Sets
=» Type Definitions
=» Inductive Definitions

3 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

How They Work

The Nat Example DATAI®

ne N
0eN n+leN

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

The Nat Example DATAI®

ne N
0eN n+leN

=» N is the set of natural numbers IN

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

The Nat Example DATAI®

ne N
0eN n+leN

=» N is the set of natural numbers IN
=>» But why not the set of real numbers? 0 e R, ne R=n+1€R

5 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

The Nat Example DATAI®

ne N
0eN n+1leN
=» N is the set of natural numbers IN
=>» But why not the set of real numbers? 0 e R, ne R=n+1€R
=» IN is the smallest set that is consistent with the rules.

5 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

The Nat Example DATAI®

ne N
0eN n+1leN
=» N is the set of natural numbers IN
=>» But why not the set of real numbers? 0 e R, ne R=n+1€R
=» IN is the smallest set that is consistent with the rules.

Why the smallest set?

5 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

The Nat Example DATAI®

ne N
0eN n+1leN
=» N is the set of natural numbers IN
=>» But why not the set of real numbers? 0 e R, ne R=n+1€R
=» IN is the smallest set that is consistent with the rules.

Why the smallest set?
=» Objective: no junk. Only what must be in X shall be in X.

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

The Nat Example DATAI®

ne N
0eN n+leN

=» N is the set of natural numbers IN
=>» But why not the set of real numbers? 0 e R, ne R=n+1€R
=» IN is the smallest set that is consistent with the rules.

Why the smallest set?

=» Objective: no junk. Only what must be in X shall be in X.
=» Gives rise to a nice proof principle (rule induction)

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Formally DATA | @

aaeX ... a,eX
ae X

defineset X C A

Rules with aj,...,ap,a€ A

Formally:

6 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Formally DATA | @

aaeX ... a,eX
ae X

defineset X C A

Rules with aj,...,ap,a€ A

Formally: set of rules R C Aset x A (R, X possibly infinite)
Applying rules R to a set B:

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Formally DATA | @

aaeX ... a,eX
ae X

defineset X C A

Rules with aj,...,ap,a€ A

Formally: set of rules R C Aset x A (R, X possibly infinite)
Applying rules Rtoaset B: R B={x.3H. (H,x)e RAHC B}

Example:

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Formally IEATA D
~N-

aaeX ... a,eX
ae X

defineset X C A

Rules with aj,...,ap,a€ A

Formally: set of rules R C Aset x A (R, X possibly infinite)
Applying rules Rtoaset B: R B={x.3H. (H,x)e RAHC B}

Example:

R = {({1,0}u{({n}n+1). ne R}
R {3,6,10} =

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Formally IEATA D
~N-

aaeX ... a,eX
ae X

defineset X C A

Rules with aj,...,ap,a€ A

Formally: set of rules R C Aset x A (R, X possibly infinite)
Applying rules Rtoaset B: R B={x.3H. (H,x)e RAHC B}

Example:

R = {({1,0}u{({n}n+1). ne R}
R {3,6,10} = {0,4,7,11}

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

The Set DATA | @

Definition: B is R-closed iff R B CB

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

The Set DATA | @

Definition: B is R-closed iff R B CB

Definition: X is the least R-closed subset of A

This does always exist:

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

The Set DATA | @

Definition: B is R-closed iff R B CB

Definition: X is the least R-closed subset of A

This does always exist:

Fact: X =[{B C A. B R—closed}

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

L] /
Generation from Above oy %
bl
N/

8 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Generation from Above DATA | %

R-closed

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Generation from Above DATA | %

R-closed

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Generation from Above DATA | %

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attributi

Generation from Above I{ATA D

61
N~

Rule Induction DATA
@

ne N
0eN n+leN

induces induction principle

[PO; An.Pn= P (n+1)] = Vxe X. Px

9 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Rule Induction DATA
@

ne N
0eN n+leN

induces induction principle

[PO; An.Pn= P (n+1)] = Vxe X. Px

In general:

V({a1,...an},a) ER.PayA...ANPa,=— P a
Vx e X. P x

9 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Why does this work? DATA | D

V({a1,...an},a) ER.PayA...ANPa,= P a
Vx e X. P x

V({a1,...an},a) €ER.PayA...ANPa,= P a
says

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Why does this work? DATA | D

V({a1,...an},a) ER.PayA...ANPa,= P a
Vx e X. P x

V({a1,...an},a) €ER.PayA...ANPa,= P a
says
{x. P x} is R-closed

but:

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Why does this work? DATA | D

V({a1,...an},a) ER.PayA...ANPa,= P a
Vx e X. P x

V({a1,...an},a) €ER.PayA...ANPa,= P a
says
{x. P x} is R-closed

but: X is the least R-closed set
hence:

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Why does this work? DATA | D

V({a1,...an},a) ER.PayA...ANPa,= P a
Vx e X. P x

V({a1,...an},a) €ER.PayA...ANPa,= P a
says
{x. P x} is R-closed

but: X is the least R-closed set
hence: X C{x. P x}
which means:

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Why does this work? DATA | D

V({a1,...an},a) ER.PayA...ANPa,= P a
Vx e X. P x

V({a1,...an},a) €ER.PayA...ANPa,= P a
says
{x. P x} is R-closed

but: X is the least R-closed set
hence: X C{x. P x}
which means: Vx e X. P x

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Why does this work? DATA | D

V({a1,...an},a) ER.PayA...ANPa,= P a
Vx e X. P x

V({a1,...an},a) €ER.PayA...ANPa,= P a
says
{x. P x} is R-closed

but: X is the least R-closed set
hence: X C{x. P x}
which means: Vx e X. P x

ged

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

- - [] - /
Rules with side conditions (o | %
bl
\/

aeX ... a,eX G ... Cp,
aeX

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Rules with side conditions DATA | %

aeX ... a,eX G ... Cp,
aeX

induction scheme:

(V({a1,..-an},a) ER.ParA...AP ay A
CGA...ANCyA
{a1,...,a,} T X = P a)

fr—
Vx e X. P x

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

X as Fixpoint DATA
@

How to compute X?

12 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

X as Fixpoint DATA
@

How to compute X?
X =B C A BR—closed} hard to work with.

Instead:

12 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

X as Fixpoint DATA
@

How to compute X?
X =B C A BR—closed} hard to work with.

Instead: view X as least fixpoint, X least set with R X =X.

12 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

X as Fixpoint DATA
@

How to compute X?
X =B C A BR—closed} hard to work with.

Instead: view X as least fixpoint, X least set with R X =X.

Fixpoints can be approximated by iteration:

=R ()= ()

12 | COMP4161 | © Data6l, CSIRO: provided under Creative Commons Attribution License

X as Fixpoint DATA
@

How to compute X?
X =B C A BR—closed} hard to work with.

Instead: view X as least fixpoint, X least set with R X =X.

Fixpoints can be approximated by iteration:

=R)= ()

X; = R! {} = rules without hypotheses

12 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

X as Fixpoint DATA
@

How to compute X?
X =B C A BR—closed} hard to work with.

Instead: view X as least fixpoint, X least set with R X =X.

Fixpoints can be approximated by iteration:
=R {}=1{}

X; = R! {} = rules without hypotheses

X, = R {}

12 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

X as Fixpoint DATA
@

How to compute X?
X =B C A BR—closed} hard to work with.

Instead: view X as least fixpoint, X least set with R X =X.

Fixpoints can be approximated by iteration:

=R)= ()

X; = R! {} = rules without hypotheses

12 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Generation from Below DATA | %

RO {}

13 | COMP4161 | © Data61, CSIRO: provided under Creative

Generation from Below DATA | %

RO {JUR" {}

13 | COMP4161 | © Data61, CSIRO: provided under Creati

) /
Generation from Below oan | %
N/

RO{JUR JUR® {}

13 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

) /
Generation from Below oan | %
N/

ROJJUR' {JUR2{}U...

13 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Does this always work? DATA | %

Knaster-Tarski Fixpoint Theorem:
Let (A, <) be a complete lattice, and f :: A= A a monotone function.
Then the fixpoints of f again form a complete lattice.

14 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Does this always work? DATA | %

Knaster-Tarski Fixpoint Theorem:
Let (A, <) be a complete lattice, and f :: A= A a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:
Finite subsets have a greatest lower bound (meet) and least upper bound

(join).

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Does this always work? DATA | %

Knaster-Tarski Fixpoint Theorem:
Let (A, <) be a complete lattice, and f :: A= A a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:
Finite subsets have a greatest lower bound (meet) and least upper bound

(join).
Complete Lattice:
All subsets have a greatest lower bound and least upper bound.

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Does this always work? DATA | @

Knaster-Tarski Fixpoint Theorem:
Let (A, <) be a complete lattice, and f :: A= A a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound
(join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:
=» least and greatest fixpoints exist (complete lattice always non-empty).

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Does this always work? DATA | %

Knaster-Tarski Fixpoint Theorem:
Let (A, <) be a complete lattice, and f :: A= A a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound
(join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:
=» least and greatest fixpoints exist (complete lattice always non-empty).
=» can be reached by (possibly infinite) iteration. (Why?)

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Exercise D oA
@

Formalize this lecture in Isabelle:

=» Define closed f A :: (a set = « set) = « set = bool

=» Show closed f A A closed f B => closed f (AN B) if f is monotone
(mono is predefined)

Define Ifpt f as the intersection of all f-closed sets

Show that Ifpt f is a fixpoint of f if f is monotone

Show that Ifpt f is the least fixpoint of f

Declare a constant R :: (« set X «) set

Define R :: a set = o set in terms of R

Show soundness of rule induction using R and Ifpt R

LK R R

15 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

We have learned today ... DATA | %

=» Formal background of inductive definitions

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

We have learned today ... DATA | %

=» Formal background of inductive definitions
=» Definition by intersection

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

We have learned today ... DATA | %

=» Formal background of inductive definitions
=» Definition by intersection
=» Computation by iteration

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

We have learned today ... DATA | %

=» Formal background of inductive definitions
=» Definition by intersection
=» Computation by iteration
=» Formalisation in Isabelle

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

