COMP4161 S2/2014
Advanced Topics in Software Verification

Exam

This take-home exam starts on Monday 10 Nov 2014, 08:00 am and is due
on Tuesday 11 Nov 2014, 07:59 am. We will accept plain text files, PDF
files, and Isabelle theory files (.thy); submission instructions are posted on
the website

http://www.cse.unsw.edu.au/~cs4161/exam.html

Many of the questions require you to write Isabelle proofs. For these ques-
tions you should use the template Isabelle theory (.thy) file provided. This
file, and these questions, are designed to be completed using Isabelle 2013-2
and AutoCorres 0.98.

As usual, you may (and should) use helper lemmas to simplify your proofs.
You may also use any lemmas in theories imported by AutoCorres: the
find_theorems command helps find such lemmas. Finally, all work must
be your own, the exam policy is more restrictive than for assignments:

You must not discuss the exam with anyone except the lecturers of this
course before the exam is due. Do not give or receive assistance.

You are allowed to use all lecture material, slides, and assignment solutions
from the web. You are also allowed to use other passive internet resources
such as Google, the Isabelle tutorial or Isabelle documentation. You are not
allowed to ask for assistance on mailing lists, forums, or anywhere else. You
are allowed to clarify questions with the lecturers.

Hints: Each question is divided into a number of sub-questions. Many of
these ask you to prove results that can, and should, be used to help prove
later lemmas in that question. If you get stuck trying to prove a result, use
the sorry command and move on to the next part of the question. This way,
you can still use an earlier, unproved result to solve a later goal if needed.
If you correctly prove a later sub-question using a sorried lemma from a
previous question, you will still earn full marks for that later question.


http://www.cse.unsw.edu.au/~cs4161/exam.html

1 Lambda Calculus (15 marks)

Consider the term Ma b. b (Ax. x a).

(a) What is its Sp-normal form? (2 marks)

(b) What is its type? (2 marks)

()

Provide a step-by-step derivation of its type, i.e. give a pen-and-paper
proof of your answer to part (b) (10 marks)

2 Induction (45 marks)

(a)

A different induction principle for lists (21 marks)
[P [1; Ax. P [x]; NAabzxs. Pxs = P (a # xs @ [b])] = P list

In this question we will be deriving step-by-step a different induction
principle for lists that says a property holds for all lists if it holds for:
(1) the empty list, (2) all lists with a single element, and (3) all lists
formed by adding new elements to the front and back of an existing
list for which the property holds.

To guide your proof, the development is split into the following sub
parts.

(i) Using the inductive_set command, define the set pal_lists that
contains: the empty list, all lists with a single element, and all
lists formed by adding new elements to the front and back of an
existing list in pal_lists. (3 marks)

(ii) Prove that if a list xs is in pal_lists, then x # xs € pal_lists,
i.e. prove xs € pal lists = x # xs € pal lists. (10 marks)

(iii) Prove that pal 1ists contains all lists, i.e. prove xs € pal lists.
(4 marks)

(iv) Using this result, or otherwise, prove the induction principle above.
(4 marks)

The function palindrome mechanically decides if a list is a palindrome,
making use of the in-built function rev that reverses a list.

palindrome xs = rev xs = XS

Implement palindrome using the definition command. (1 mark)



(c) Prove that if a # xs @ [b] is a palindrome, then a = b, i.e.
palindrome (a # xs @ [b]) = a =1b

(4 marks)

(d) Inductively define the set palindromes that contains all palindromes
and nothing else, using the inductive_set command. (5 marks)

(e) Prove that palindrome xs if and only if xs € palindromes, i.e.

palindrome xs = (xs € palindromes)

(14 marks)

3 C Verification (40 marks)

We will now verify some simple C functions.

unsigned divmod (unsigned n, unsigned m, unsigned domod) {
unsigned d = 0;
while(n >= m) {
n -= m;
d++;
}
if (domod) {
return n;
} else {
return d;
}
}

unsigned even (unsigned n){
return (divmod(n,2,1) == 0);
}

(a) After being processed by AutoCorres with the unsigned word_abs en-
abled for both functions, what are the names of the functions pro-
duced by AutoCorres that represent the semantics of the divmod()
and even() functions, and what are their types? Which monad has
AutoCorres used to represent both of them? (5 marks)

(b) Is divmod () guaranteed to always terminate? Explain and justify your
answer. (5 marks)




(¢c) We can give an abstract specification for the behaviour of divmod()
via the following definition.

divmod_spec n m domod = if domod # O then n mod m else n div m

Prove that divmod () yields correct answers, i.e. prove that

ovalid (A_. True) (divmod’ n m domod)
(Ar s. r = divmod_spec n m domod)

(8 marks)

(d) Write and prove correct a weakest precondition rule for divmod’, i.e.
replace the term ?PRE in the following statement with the weakest pre-
condition that guarantees the postcondition Q, and prove the statement
correct: ovalid ?PRE (divmod’ n m domod) Q (12 marks)

(e) Prove that even() returns correct answers, i.e. prove
ovalid (A_. True) (even’ n) (Ar s. r = (if even n then 1 else 0))

(5 marks)

(f) Is even() guaranteed to always terminate? Explain and justify your
answer. (5 marks)

end



	Lambda Calculus (15 marks)
	Induction (45 marks)
	C Verification (40 marks)

