
www.csiro.au

Eisbach
A proof method language for Isabelle

Daniel Matichuk | PhD Student

October 2016

Isabelle Concepts
Isar, Proof Methods, and ML

h A

�
=Isa

be
lle

`

_

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

Isabelle Stack

3

h A

�
=Isa

be
lle

`

_

Isar

Isabelle/ML

Poly/ML

jEdit (Scala)

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

Isabelle/Isar

4

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

Isabelle/Isar

4

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

Proof Methods

5

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

Proof Methods

5

Goal

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

Proof Methods

5

Goal Method

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

Proof Methods

5

Goal CombinatorMethod

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

Proof Methods

5

Goal CombinatorMethod

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

blah

By dmatichuk

June 25, 2014

Contents

theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H)

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)

1

Method Expression

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

– apply (rule FalseE)

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

– apply (rule FalseE)
• Extensible through declaration attributes

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

– apply (rule FalseE)
• Extensible through declaration attributes
• e.g. always use fact as introduction rule when applicable

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

– apply (rule FalseE)
• Extensible through declaration attributes
• e.g. always use fact as introduction rule when applicable

– declare my_fact[intro!]

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

– apply (rule FalseE)
• Extensible through declaration attributes
• e.g. always use fact as introduction rule when applicable

– declare my_fact[intro!]
• Combinators used to make method expressions

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

– apply (rule FalseE)
• Extensible through declaration attributes
• e.g. always use fact as introduction rule when applicable

– declare my_fact[intro!]
• Combinators used to make method expressions
• e.g. apply ((subst foo | (rule baz; simp?))+)[1]

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

– apply (rule FalseE)
• Extensible through declaration attributes
• e.g. always use fact as introduction rule when applicable

– declare my_fact[intro!]
• Combinators used to make method expressions
• e.g. apply ((subst foo | (rule baz; simp?))+)[1]

• Implemented in Isabelle/ML

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

– apply (rule FalseE)
• Extensible through declaration attributes
• e.g. always use fact as introduction rule when applicable

– declare my_fact[intro!]
• Combinators used to make method expressions
• e.g. apply ((subst foo | (rule baz; simp?))+)[1]

• Implemented in Isabelle/ML
• requires knowledge of Isabelle’s implementation

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk6

• Syntactic layer for tactics
• LCF-style reasoning to guarantees soundness

• Perform arbitrary (potentially unsafe) transformations
• e.g. claim assumptions are contradictory

– apply (rule FalseE)
• Extensible through declaration attributes
• e.g. always use fact as introduction rule when applicable

– declare my_fact[intro!]
• Combinators used to make method expressions
• e.g. apply ((subst foo | (rule baz; simp?))+)[1]

• Implemented in Isabelle/ML
• requires knowledge of Isabelle’s implementation

• often break with API changes

Proof Methods

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

Isar vs. ML

7

Files in Isabelle’s AFP

Isar (.thy)
1,663

ML
50

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk

• Full functional correctness proof
• Open source proof and code

• http://seL4.systems for more info

• Isabelle proof methods developed
• wp/wpc

– vcg for monadic hoare logic

• sep-cancel, sep_solve …
– automating separation logic

• Proof Engineers want more!

8

seL4
Our experience

Eisbach
Easy Custom Proof Methods

h A

�
=Isa

be
lle

`

_

Map data ©2014 COWI, GeoBasis-DE/BKG (©2009), Google 50 m

Directions

Getting around
Show: Traffic · Transit · Bicycling · Terrain

Map data ©2014 COWI, GeoBasis-DE/BKG (©2009), Google 50 m

Directions

Getting around
Show: Traffic · Transit · Bicycling · Terrain

Isar

Map data ©2014 COWI, GeoBasis-DE/BKG (©2009), Google 50 m

Directions

Getting around
Show: Traffic · Transit · Bicycling · Terrain

Isar

Eisbach

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk11

Demo

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk12

• Ltac
• Untyped High-level tactic language for Coq

• Goal matching, iteration, recursion

• VeriML
• Dependently typed tactic language

• Provides strong static guarantees

• Mtac
• Typed tactic language for Coq

• Leverages built-in Coq notion of computation

• Strong static guarantees

Tactic languages are not new

Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk13

• Extensive backtracking support
• In Isabelle’s combinators and match method

• Named theorems
• Efficient and convenient databases of facts

• Powerful pattern matching
• Using Isabelle’s unifier

• Extensible
• Language extensions can be built as proof methods (in ML)

• e.g. match is simply another proof method

What distinguishes Eisbach?

www.csiro.au

Thank You!
SSRG
Daniel Matichuk 
PhD Student

e daniel.matichuk@data61.csiro.au
w ts.data61.csiro.au/people/?cn=Daniel+Matichuk

https://ts.data61.csiro.au/people/?cn=Daniel+Matichuk

