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Isabelle Concepts




Isabelle Stack

jEdit (Scala)

Isabelle/ML
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Isabelle/Isar

theorem Knaster-Tarski'’:
assumes monolintro!l: Az y. z <y = fx < fy

shows f ([| {z. fx <z}) =[] {z. fze < =x}) (is f Ya = %a)
proof —

have x: f %a < ?a by (clarsimp,rule order.trans, fastforce)

also have ?a < f %a by (fastforce intro!: x)

finally show f Ya = “a .

qed

e — e E——
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Proof Methods

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

also have “a < f Ya by (fastforce intro!: x)
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Proof Methods

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

Goal

also have ?a < f Ya by (fastforce intro!: x)
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Proof Methods

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

A

Goal Method

NN\

also have Y0 < f Ya by (fastforce intro!: *)
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Proof Methods ﬁm D

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

) N

Goal Method Combinator

NN\

also have Y0 < f Ya by (fastforce intro!: *)
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Method Expression

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

Goal Method Combinator

NN\

also have ?a < f Ya by (fastforce intro!: x)
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Proof Methods
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Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)
* Extensible through declaration attributes
e e.g. always use fact as introduction rule when applicable

— declare my fact[intro!]
« Combinators used to make method expressions

® c.g. apply ((subst foo | (rule baz; simp?))+)[1]

e Implemented in Isabelle/ML

e requires knowledge of Isabelle’s implementation
e often break with API changes
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Isar vs. VIL

Files in Isabelle’s AFP

Isar (.thy)
1,663
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selL4

Our experience

e Full functional correctness proof
e Open source proof and code
e http://sel4.systems for more info

A
% Mo viksonel

e [sabelle proof methods developed
e Wp/WpC
— vcg for monadic hoare logic
e sep-cancel, sep_solve ...
— automating separation logic

e Proof Engineers want more!
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Tactic languages are not new

e Ltac

e Untyped High-level tactic language for Coq
e Goal matching, iteration, recursion

e VeriML

e Dependently typed tactic language
e Provides strong static guarantees

e Mtac

e Typed tactic language for Coq
e Leverages built-in Coq notion of computation
e Strong static guarantees
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What distinguishes Eisbach?

« Extensive backtracking support
e |In Isabelle’s combinators and match method

e Named theorems
e Efficient and convenient databases of facts

o Powerful pattern matching
e Using Isabelle’s unifier

e Extensible

e Language extensions can be built as proof methods (in ML)
e e.g. match is simply another proof method
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