| | | |
N ONS S AN\

I | |
I DATA NN NASNS N NN

|| N N
SN ININSNSN N
A
\ 7~ N / \I/ I/ \I \I/ N

e N N

7 7

Eisbach \/l\ /I
A proof method language for Isabelle | |
Daniel Matichuk | PhD Student ~” N\

October 2016

WWW.CSiro.au &




~N 7

Isabelle Concepts




Isabelle Stack

jEdit (Scala)

Isabelle/ML

3 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk



Isabelle/Isar

theorem Knaster-Tarski'’:
assumes monolintro!l: Az y. z <y = fx < fy

shows f ([| {z. fx <z}) =[] {z. fze < =x}) (is f Ya = %a)
proof —

have x: f %a < ?a by (clarsimp,rule order.trans, fastforce)

also have ?a < f %a by (fastforce intro!: x)

finally show f Ya = “a .

qed

e — e E——

4 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk



Isabelle/Isar

theorem Knaster-Tarski'’:
assumes monolintro!l: Az y. z <y = fx < fy
shows f ([| {z. fx <z}) =[] {z. fze < =x}) (is f Ya = %a)
proof —
have x: f %a < ?a by (clarsimp,rule order.trans, fastforce)

also have ?a < f %a by (fastforce intro!: x)
finally show f Ya = “a . \/

qed

e — e

4 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

also have “a < f Ya by (fastforce intro!: x)

5 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

Goal

also have ?a < f Ya by (fastforce intro!: x)

5 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

A

Goal Method

NN\

also have Y0 < f Ya by (fastforce intro!: *)

5 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods ﬁm D

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

) N

Goal Method Combinator

NN\

also have Y0 < f Ya by (fastforce intro!: *)

5 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




7~
Proof Methods | DaTA | ®
N S

Method Expression

have x: f %a < %a by (clarstmp,rule order.trans, fastforce)

Goal Method Combinator

NN\

also have ?a < f Ya by (fastforce intro!: x)

5 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk



Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)
* Extensible through declaration attributes

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)
* Extensible through declaration attributes
e e.g. always use fact as introduction rule when applicable

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)
* Extensible through declaration attributes
e e.g. always use fact as introduction rule when applicable

— declare my fact[intro!]

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)
* Extensible through declaration attributes
e e.g. always use fact as introduction rule when applicable

— declare my fact[intro!]
« Combinators used to make method expressions

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)
* Extensible through declaration attributes
e e.g. always use fact as introduction rule when applicable

— declare my fact[intro!]
« Combinators used to make method expressions

® c.g. apply ((subst foo | (rule baz; simp?))+)[1]

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)
* Extensible through declaration attributes
e e.g. always use fact as introduction rule when applicable

— declare my fact[intro!]
« Combinators used to make method expressions

® c.g. apply ((subst foo | (rule baz; simp?))+)[1]
e Implemented in Isabelle/ML

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)
* Extensible through declaration attributes
e e.g. always use fact as introduction rule when applicable

— declare my fact[intro!]
« Combinators used to make method expressions

® c.g. apply ((subst foo | (rule baz; simp?))+)[1]

e Implemented in Isabelle/ML
e requires knowledge of Isabelle’s implementation

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Proof Methods

e Syntactic layer for tactics
e LCF-style reasoning to guarantees soundness

e Perform arbitrary (potentially unsafe) transformations
e e.g. claim assumptions are contradictory

— apply (rule FalseE)
* Extensible through declaration attributes
e e.g. always use fact as introduction rule when applicable

— declare my fact[intro!]
« Combinators used to make method expressions

® c.g. apply ((subst foo | (rule baz; simp?))+)[1]

e Implemented in Isabelle/ML

e requires knowledge of Isabelle’s implementation
e often break with API changes

6 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Isar vs. VIL

Files in Isabelle’s AFP

Isar (.thy)
1,663

7 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk



selL4

Our experience

e Full functional correctness proof
e Open source proof and code
e http://sel4.systems for more info

A
% Mo viksonel

e [sabelle proof methods developed
e Wp/WpC
— vcg for monadic hoare logic
e sep-cancel, sep_solve ...
— automating separation logic

e Proof Engineers want more!

8 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Eisbach

~N 7



‘Volksmusik Lied..

£
W
@m
f..,,”m




T

b gL s
& <
RS &
e
5 o .
_.-;% . Q‘? Hirschau [ 71
(7] %ﬁwabln 'x":.-z'
K.}"Er
2
fh
-3
&
&
X
% &
o Tennis Hirschau (=
‘?? L?Gf/
<& S,
x . b
o
[
&
54
- S
sim o &=
irten was
7
(i
=)
.
)
e
2
T
Gyﬂl'lﬂq
&
o
% S
) o
%
=
Seestadlim -
ischen Garten
T
=,
%
e
Fe
Gﬁ'—‘?f/,.
“
2 &
\
£
&ﬁ‘j},}.
g
"\‘.& /e
il ‘?a,} . Munchner Kreis fiir ' Alba 1
£ o "’?g ) Volksmusik Lied.
HVE Club [ = ol / B
5 & ‘Tﬁ'f,.,- it
£ T o “3g
- x &
Freizeit | ® QA“
BIL Lea!sing Gmng &~

AT Catarinn Sarviee -



5im
irten i

Gyt nasY

Seestadlim -

ischen Garten

r*u-J‘S\IraLuJG DEx

A

HVE Club [ #

Freizeit | =

BIL Leasing GmbH &

P ek T.0eal Tl s oo

Hirschau [ 71

f}ﬁ\ ) ﬁ,‘b\

Tennis Hirschau (=

Eisbach

=\
@}‘?"G

S
T
0y
Q‘ﬂ‘j
7
(]
e 3
r,}a A
o > i
il ,é?'\
e
s
5
o
Ve
G‘@,},j
3
Q
/s,
L/ .{:?
()
B
F?,_‘g.’a”
-'1? Qg"
& S
= &
o L
2
< &
A
<

AC Catarinn Sarvies

o
‘II:-':]
E‘.I
@
3
&
fxd
5
/
Sr:
“
g

Mt &
IE‘? o
el
&
o]
g
o
£
&
3
o
AL
o
o
P
S,
[
2 i,
,\&_'z" L
33 e e
5 S
£ &
$ &
& Wi
rad o
o
CJE %
/ﬂfa’
Sz
5-‘(?&
ot
e
_ér"
é-ﬂ
b
JQN-'
o
i
iy
Connec
[
&
&
&
"?t-h
"-";.'.‘;.f,é.
G l".’-v
w_“{
-:xnz"
ol
P
£ &
& s
ol :r/?/__ w2
> Sy ~
i b
3 e
=
=
J:S
O
= Jl?f:'{y
y‘/".;“r:s,
ST
- . '\-?_{ﬁﬂ
Minchner Kreis fiir
B Yolksmusik Lied..
o
f,g Bl
L Fra,
rf‘; II‘-f":.'-
L) L*F-'",':g_f;
He

g

Alba T



Demo

11 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




Tactic languages are not new

e Ltac

e Untyped High-level tactic language for Coq
e Goal matching, iteration, recursion

e VeriML

e Dependently typed tactic language
e Provides strong static guarantees

e Mtac

e Typed tactic language for Coq
e Leverages built-in Coq notion of computation
e Strong static guarantees

12 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




What distinguishes Eisbach?

« Extensive backtracking support
e |In Isabelle’s combinators and match method

e Named theorems
e Efficient and convenient databases of facts

o Powerful pattern matching
e Using Isabelle’s unifier

e Extensible

e Language extensions can be built as proof methods (in ML)
e e.g. match is simply another proof method

13 Eisbach: A Proof Method Language for Isabelle | Daniel Matichuk




// W W/I/ /W/\/W
ATA ~ \/\/W/I/W ﬁ/\
IE I /\/ ANSNSNSN N

D N /\/I /I\ I\/I\

Thank You! I
7 7”7~

SSRG I I

Daniel Matichuk NN

PhD Student

e daniel.matichuk@data61.csiro.au I I

w ts.databl.csiro.au/people/?cn=Daniel+Matichuk 7\

WWW.CSiro.au @



https://ts.data61.csiro.au/people/?cn=Daniel+Matichuk

