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theory Scratch
imports Main ⇠⇠/src/HOL/Library/Lattice-Syntax
begin

theorem Knaster-Tarski :
assumes mono:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a (is - 

d
?H )

proof

fix x assume H : x 2 ?H
then have ?a  x ..

also from H have f x  x ..

moreover note mono finally show f ?a  x .

qed

also have ?a  f ?a
proof

from mono and ⇤ have f (f ?a)  f ?a .

then show f ?a 2 ?H ..

qed

finally show f ?a = ?a .

qed

theorem Knaster-Tarski 0:
assumes mono[intro!]:

V
x y . x  y =) f x  f y

shows f (
d

{x . f x  x}) =
d

({x . f x  x}) (is f ?a = ?a)
proof �
have ⇤: f ?a  ?a by (clarsimp,rule order .trans , fastforce)
also have ?a  f ?a by (fastforce intro!: ⇤)
finally show f ?a = ?a .

qed

theorem Knaster-Tarski 00: (
V
x y . x  y =) f x  f y) =)
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7

Files in Isabelle’s AFP

Isar (.thy) 
1,663

ML 
50
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• Full functional correctness proof 
• Open source proof and code 

• http://seL4.systems for more info 

• Isabelle proof methods developed 
• wp/wpc 

– vcg for monadic hoare logic 

• sep-cancel, sep_solve … 
– automating separation logic 

• Proof Engineers want more!

8

seL4
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• Ltac 
• Untyped High-level tactic language for Coq 

• Goal matching, iteration, recursion 

• VeriML 
• Dependently typed tactic language 

• Provides strong static guarantees 

• Mtac 
• Typed tactic language for Coq 

• Leverages built-in Coq notion of computation 

• Strong static guarantees

Tactic languages are not new
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• Extensive backtracking support 
• In Isabelle’s combinators and match method 

• Named theorems 
• Efficient and convenient databases of facts 

• Powerful pattern matching 
• Using Isabelle’s unifier 

• Extensible 
• Language extensions can be built as proof methods (in ML) 

• e.g. match is simply another proof method

What distinguishes Eisbach?
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